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The Syllabus
Module 1 (2 hours): Syntax, Semantics, Entailment and Models, Proof Systems, Knowledge 
Representation. 

Module 2 (2 hours): Skolemization, Unification, Deductive Retrieval, Forward Chaining, 
Backward Chaining 

Module 3 (2 hours): Resolution Refutation in FOL, Horn Clauses and Logic Programming

Module 4 (2 hours): Variations on FOL

Text book

Deepak Khemani. A First Course in Artificial Intelligence (Chapters 12 & 13), McGraw Hill 
Education (India), 2013.  
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Terms of L(P,F,C) 

The basic constituents of FOL expressions are terms. The set of terms of 
L(P,F,C) is defined as follows. The constants and the variables are terms 
by definition. More terms are defined using the function symbols.

If t V then t 

If t C then t 

If t1, t2, …, tn and f F is an n-place function symbol 
then f(t1,t2, …,tn) 

Recap
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Atomic Formulas of L(P,F,C) 
The set of formulas is defined using terms and predicate symbols. By default 
the logical symbols “ ” and “ ” are also formulas. The set of well formed 
formulas F of L(P,F,C)  is defined as follows.

Atomic formulas A

A
A

If t1, t2 then (t1=t2) A

If t1, t2, …, tn and P P is an n-place predicate symbol 
then P(t1,t2,…,tn) A

Recap
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Formulas of L(P,F,C)

The set of formulas of L(P,F,C) is defined as follows 

If α A then α 

If α then ~α 

If α, β then (α β) 

If α, β then (α β) 

If α, β then (α β) 

Recap
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Universal and Existential Quantifiers

If α and x V then x (α) 

x (α)  is read as “for all x (α)”

If α and x V then x (α) 

x (α)  is read as “there exists x (α)”

We will also use the notation (forall (x) (α)) and (exists (x) (α)) as given in 
the book Artificial Intelligence by Eugene Charniak and Drew McDermott. 

Makes representation for use in programs simpler.
Recap
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Beyond FOL

The “Physical” Domain

Actions
FOL predicates 
(Fluents)

Time

Predicate Calculus (FOL): 
Relations between domain 
elements

FOL cannot represent and reason about many things.

Knowledge

Belief

Uncertainty
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Planning: A Quick Introduction

Domain

Objectives

PerceiveAct

A planning agent can perceive the world, and produces actions designed to achieve its 
objectives. In a static domain the agent is the only one who acts. A dynamic domain can be 
modeled by including other agencies that can change the world.

Other events
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STRIPS Planning Domain: Blocks World

stack(A,B)

on(A,B)

holding(A) clear(B)

AE ~clear(B)

putdown(B)

ontable(B)

holding(B)

AE

unstack(B,C)

~on(B,C)

on(B,C) clear(B)

~AE holding(B)

AE

clear(C)

pickup(A)

holding(A)

ontable(A) clear(A)

~AE~ontable(A)

AE

Predicates

ontable(X)
on(X,Y)
clear(X)
holding(X)
AE 

unstack(X,Y)

~on(X,Y)

on(X,Y) clear(X)

~AE holding(X)

AE

clear(Y)

action

effects

preconditions 
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State Space Planning

E

D

I

H

J O

N

Q

GC

P

M

F

B

L

K

A

A

G

J

B

The Given State The Goal = on(G,A) Λ on(B,J)

Note: The Goal is a partial state description.
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Fluents, Events, and Time

The FOL representation does not talk about 
time.

When is On(A,B) true? 

If the world is changing then how do we capture 
the statements that change in truth value?

A

B

{(On A B), (On B C),  (not (Maroon A)), (Maroon C)}

C

Recap

Given state
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Fluents, Events, and Time

The FOL representation does not have a notion of time. It is 
more suited for mathematics where a statement that is true 
remains true (for ever). For example the Pythagoras Theorem. 

After the robot unstacks A from B On(A,B) is not longer true. We 
need to add time to statements to indicate when they are true. 

We refer to statements (atomic predicates) whose truth value can 

change with time as fluents. 

A

B

{(Holding A), (On B C),  (not (Maroon A)), (Maroon C)}

C

After the event Unstack(A,B) 
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Interpretation 2

Domain: People

When was Anne 
looking at John?

Is looking at an event?

{(O A B), (O B C),  (not (M A)), (M C)}

John

is not married

Anne Jack

is married ?

Anne is looking at John

Jack is looking at Anne

Recap
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Reification

To reason about the effects of actions on the world then we need to be able 
to treat actions and fluents as arguments to predicates that represent 
relations between them. But arguments to predicates in FOL can only be 
terms, and terms are mapped to elements in the domain. 

We can circumvent this problem by extending the domain to include 
instances of actions and fluents. That is, for the purpose of reasoning with 
them, we add the symbolic representations of predicates and actions to the 
domain or the universe of discourse. 

We say that we have reified the actions and predicates. 
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Event Calculus

The “Physical” Domain

Actions
FOL predicates 
(Fluents)

Time

The EC Predicates

Event Calculus: Relations 
between Time, Actions and 
Fluents

Predicate Calculus (FOL): 
Relations between domain 
elements

The domain for the Event Calculus is Time, Actions and Fluents.
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The Event Calculus

Jogesh made a cup of tea and left it on the table. 

Meanwhile Smita saw the cup of tea and drank it. 
When Jogesh came back he saw that the cup 

was empty. 

Reasoning about time, action, and change. 

Recap
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Epistemic reasoning

Jogesh made a cup of tea and left it on the table. Meanwhile Smita 
saw the cup of tea and drank it. When Jogesh came back he saw that 
the cup was empty. 

He concluded that Smita had polished off his cup of tea. 

Smita knew that Jogesh knew that she drank the tea.

Knowledge and belief of agents 
Recap
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Event Calculus: Variables and Constants

The variables and constants of the EC belong to one of the following sorts.

•an event sort, with variables {e, e1, e2, …}. Includes actions and 
exogenous events in the specific domain, like unstack(block2, block6), 
walk(home22, ramesh23, office34), wakeUp(kumbhakaran1), 
cyclone(nisha, 2008).

•a fluent sort, with variables {f, f1, f2, …}. The predicates from the domain, 
like holding(block2), loc(ramesh23, office34), awake(kumbhakaran1).

•a timepoint sort with variables {t, t1, t2, …}. In the Continuous Event 
Calculus (CEC) they may be real numbers, and in Discrete Event Calculus 
(DEC) they are integers.
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The Event Calculus: Predicates-1

• Happens(e,t1,t2): Event e starts at t1 and ends at t2. Observe that the event 
has a duration. For example, Happens(Eclipse321,t5,t7) says that a particular 
eclipse happened between time points t5 and t7.

• An instantaneous version of Happens can be defined as, 
Happens(e,t) Happens(e,t,t)

• HoldsAt(f,t): Fluent f is true at time point t. For example, 
HoldsAt(Form(Glacier17, Solid), t1) says that at time point t1 Glacier17 is in 
solid form. One may also define a predicate 

• Initally(f) to assert that fluent f is true initially.
Initally(f) HoldsAt(f,t0)
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The Event Calculus: Predicates-2

• Initiates(e,f,t): Event e occurs at time t and results in the fluent f becoming true
after t. For example the event of waking up initiates the fluent of being awake 
to be true, by 
Initiates(wakeup(kumbhakaran1), awake(kumbhakaran1), t3).

In the DEC it means that the fluent f is true at time (t+1) and later. 

• Terminates(e,f,t): Event e occurs at time t and results in the fluent f becoming 
false after t.

• For the durative version of the action one can define the fluent to become true

or false at either endpoint. For example, for Walk(Home, Actor, Office), the 
fluent AtHome(Actor) becomes false (is terminated) at the start of the walk 
event, while the fluent AtOffice(Actor) becomes true (is initiated) at the end.
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The Event Calculus: Predicates-3
• ReleasedAt(f,t): The fluent f is released from the commonsense law of inertia

at time t. 

• The commonsense law of inertia states that a fluent’s truth value will not 
change unless affected - initiated or terminated – by an event. If a fluent is 
released from the commonsense law then it can fluctuate, and one cannot 
deduce its state. 

• Releasing a fluent from the commonsense law is a mechanism to deal with 
certain kinds of uncertainty. For example, if you toss a coin then you release 
the fluent Heads(Coin) from the commonsense law, and it could take any 
value. 

• Releases(e,f,t): Event e occurs at time t, after which the fluent f is released 
from the commonsense law of inertia.
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The Event Calculus: Predicates-4

• If fluent f1 is initiated by an event that occurs at time t1 then fluent f2 will be true
at time (t1+t2). 

• Trajectory(f1,t1,f2,t2): This allows one to capture a causal relation between two 
fluents. For example, if On(Stove) is initiated by Light(Stove) at t1 then the 
fluent Temp(Water,SomeIncreasingFn(t2)) is true at time (t1+t2).

• AntiTrajectory(f1,t1,f2,t2): If fluent f1 is terminated by an event that occurs at 
time t1 then fluent f2 will be true at time (t1+t2). 
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The Event Calculus: Derived Predicates

Clipped(t1,f,t2): A fluent f that was true is made false sometime after or at time point 
t1 and before t2. This is equivalent to the longer formula,

e,t(Happens(e,t)  (t1 ≤ t < t2)  Terminates(e,f,t))

Declipped(t1,f,t2): A fluent f that was false is made true sometime after or at time 
point t1 and before t2. This is equivalent to the longer formula,

e,t(Happens(e,t)  (t1 ≤ t < t2)  Initiates(e,f,t))

PersistsBetween(t1,f,t2): The fluent f is not released from the commonsense law of 
inertia after time point t1 and up to and including time point t2. That is, it retains its 
truth value during the interval. This is a short form for,

t(ReleasedAt(f,t)  (t1 <  t ≤ t2))
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EC: The Effect of Events on Fluents

EC1: (Happens(e,t)  Initiates(e,f,t))  HoldsAt(f,t)

Likewise if an event happens that terminates a fluent the fluent ceases to hold when 
it happens.

EC2: (Happens(e,t)  Terminates(e,f,t))  HoldsAt(f,t)

Events may release a fluent from the commonsense law of inertia, or they may 
terminate their released status.

EC3: (Happens(e,t)  Releases(e,f,t))  ReleasedAt(f,t)

EC4: (Happens(e,t)  (Initiates(e,f,t)  Terminates(e,f,t))  ReleasedAt(f,t)

Note: All formulas are universally quantified
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The Inertia Axiom (IA)

Using the above definitions we can infer that the value of a fluent remains 

the same if it remains under the commonsense law of inertia and is not 
clipped by some event.

IA: (HoldsAt(f,t1)  (t1<t2)  PersistsBetween(t1,f,t2)  Clipped(t1,f,t2)) 
 HoldsAt(f,t2)

Note: All formulas are universally quantified
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The Frame Problem 
https://plato.stanford.edu/entries/frame-problem/

The frame problem is the challenge of representing the effects of action 
in logic without having to represent explicitly a large number of intuitively 
obvious non-effects.

Initiates(Paint(x, c), Colour(x, c), t) 
Initiates(Move(x, p), Position(x, p), t)
HoldsAt(Colour(A, Red), 1)
HoldsAt(Position(A, House),1)
Happens(Paint(A, Blue), 2)
Happens(Move(A, Garden), 2)

What is true at time 4? Does Move affect colour?
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The Yale Shooting Problem (Hanks & McDermott, 1987)

There are three types of action — Load,  Sneeze, Shoot 
Three fluents — Loaded, Alive, Dead

Initiates(Load,Loaded,t) (Y1.1) 
Initiates(Shoot,Dead,t)   HoldsAt(Loaded,t) (Y1.2) 
Terminates(Shoot,Alive,t)  HoldsAt(Loaded,t) (Y1.3)
InitiallyP(Alive) (Y2.1) 
Happens(Load,T1) (Y2.2) 
Happens(Sneeze,T2) (Y2.3) 
Happens(Shoot,T3) (Y2.4) 
T1 < T2 (Y2.5) 
T2 < T3 (Y2.6) 
T3 < T4 (Y2.7)

Now let Σ be the conjunction of (Y1.1) to (Y1.3), 
and let ∆ be the conjunction of (Y2.1) to (Y2.7
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The Yale Shooting Problem (Hanks & McDermott, 1987)

Now let Σ be the conjunction of (Y1.1) to (Y1.3), 
and let ∆ be the conjunction of (Y2.1) to (Y2.7)

Let SC be a Simple Calculus
HoldsAt(f,t)  InitiallyP(f) ¬ Clipped(0,f,t) (SC1) 
HoldsAt(f,t2)   Happens(a,t1) Initiates(a,f,t1) t1 < t2 ¬Clipped(t1,f,t2)  

(SC2) 
Clipped(t1,f,t2) ↔ a,t [Happens(a,t) t1 < t < t2 Terminates(a,f,t)]        (SC3) 

Does the following hold?
Σ ∆ SC HoldsAt(Dead,T4).
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The Yale Shooting Problem (Hanks & McDermott, 1987)

Does the following hold?
Σ ∆ SC HoldsAt(Dead,T4).

Unfortunately this sequent is not valid. We have not described explicitly the non-
effects of actions. In particular, we haven’t said that the Sneeze action doesn’t 
unload the gun. So there are, for example, models of SC Σ ∆ in which 
Terminates(Sneeze,Loaded,T2) is true, Holds(Alive,T4) is true, and 
HoldsAt(Dead,T4) is false. 

In addition to describing the non-effects of actions, we must describe the non-
occurrence of actions. And, more trivially, we must include formulae that rule out the 
possibility that, say, the Sneeze action and the Shoot action are identical.

UNA[Load, Sneeze, Shoot] (Y3.1) 
UNA[Loaded, Alive, Dead] (Y3.2) 
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A Circumscriptive Solution to the Frame Problem 

The idea of circumscription is to minimise the extensions of certain 
named predicates. That is to say, the circumscription of a formula Φ 
yields a theory in which these predicates have the smallest extension 
allowable according to Φ. The circumscription of Φ minimising the 
predicate ρ is written, CIRC[Φ ; ρ]. 

This is equivalent to the following second-order formula. 

Φ ¬ q [Φ(q) q < ρ] where, 
•q = ρ means x [q(x) ↔ ρ(x)], 
•q ≤ ρ means x [q(x) → ρ(x)], 
•q < ρ means [q ≤ ρ] ¬ [q = ρ], and 
•Φ(q) is the formula obtained by replacing all occurrences of ρ in Φ by q.
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Circumscription on the Yale Shooting problem
Given, 

• a conjunction Σ of Initiates and Terminates formulae, 
• a conjunction ∆ of InitiallyP, Happens and temporal ordering formulae, and 
• a conjunction Ω of uniqueness-of-names axioms for actions and fluents, 

we’re interested in, CIRC[Σ ; Initiates, Terminates] ∧ CIRC[∆ ; Happens] ∧ SC ∧ Ω.

The minimisation of Initiates and Terminates corresponds to the default assumption that 
actions have no unexpected effects, and the minimisation of Happens corresponds to the 
default assumption that there are no unexpected event occurrences. 

Let Σ be the conjunction of (Y1.1) to (Y1.3), and let ∆ be the conjunction of (Y2.1) to (Y2.7). 
We have, 

CIRC[Σ ; Initiates, Terminates] ∧ CIRC[∆ ; Happens] ∧ SC ∧ Ω ⊨ HoldsAt(Dead,T4). 
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Problems with the Universal Quantifier

One facet of reasoning under uncertainty is known as default reasoning. This 
involves making inferences that are plausible or likely but not necessarily entailed 
by the knowledge base. The need for default reasoning arises because of our 
desire to generalize connections between categories, to express them in a succinct 
manner. A universal statement like the one below is simply not adequate. 

x (Bird(x)  Flies(x))

The moment we come up with an exception for example a bird called Peppy who 
cannot fly being a penguin,

Bird(peppy)  Penguin(peppy)  Flies(peppy)

our knowledge base becomes unsatisfiable
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Default Reasoning

Instead we would like to have a mechanism by which given a knowledge 
base we can make the set of plausible inferences, with the caveat that if 
the knowledge base grows then some of the inferences may not hold. 

This implies that the set of inferences that we can make does not grow 
monotonically with what we know, and could in fact become smaller 
when we add more facts. 

This form of reasoning is called non-monotonic reasoning, because the 
set of inferred sentences does not grow monotonically with the set of 
known facts.
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Circumscription

Circumscription, devised by John McCarthy, is an approach that aims to minimize the 
extent of only some predicates (McCarthy, 1980; 1986), (Lifschitz, 1985; 1994). 
Traditionally these predicates characterize abnormality with respect to the intended 
default inference, but circumscription itself can be done over any set of specified 
predicates.

The solution to this problem as proposed by McCarthy adds another clause to the 
antecedent saying that in addition to be being birds the individual should not be 
abnormal. This clause is intended to catch the abnormal cases. 

x (Bird(x)Ab(x)  Flies(x))

Default reasoning with circumscription aims to minimize the extent of the abnormality 
predicates.
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Circumscription

Let ϑ1(D, 1) and  ϑ2(D, 2) be two interpretations that agree on all constants and 
functions of the language. We define the relation  as follows,

ϑ1ϑ2 iff for every predicate P being circumscribed 1(P)  2(P)

And, ϑ1<ϑ2 iff ϑ1ϑ2 and ϑ2 ϑ1. 

We can now define entailment  under circumscription as,
KB   iff for every interpretation ϑ such that ϑ KB either KB  or there 

is an interpretation ϑ’ such that ϑ’<ϑ and ϑ’ KB.

If the predicate being circumscribed is Ab then we can also say equivalently that,

KB   iff   Circ[KB; Ab] 
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An illustrative example

Consider the knowledge base ,

KB = {x (Bird(x)Ab(x)  Flies(x)), Bird(tweety), Bird(chilly), 
chilly ≠ tweety, Flies(chilly)}

Is it reasonable to conclude that Tweety can fly?

KB  Flies(tweety)?

In Circumscription we minimize Ab predicate, and then consider normal 
entailment in the minimal model. 



Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

An illustrative example

Observe that ,

x (Bird(x)Ab(x)  Flies(x)) ≡ x (Bird(x)Flies(x)  Ab(x)) 

Then given that Bird(chilly)  Flies(chilly) we can conclude Ab(chilly). 

Therefore in the minimal model Ab(chilly) must be present 
and therefore Ab(tweety) is true in the minimal model.

Therefore, KB  Flies(tweety?
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KB  Flies(tweety) 

Ab(chilly), 
Ab(tweety)

Ab(tweety) Ab(chilly)

ϑ1⊨KB 

ϑ2⊨KB 

Neither Chilly nor Tweety can fly

Tweety can flyNot a model

Not a model

Minimal Model

Model
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Another illustrative example

Consider the knowledge base ,

KB = {x (Bird(x)Ab(x)  Flies(x)), Bird(tweety), Bird(chilly), 
chilly ≠ tweety, (Flies(tweety) ∨ Flies(chilly))}

Is it reasonable to conclude that Tweety or Chily can fly?

KB  (Flies(tweety) ∨ Flies(chilly)) ?

In Circumscription we minimize Ab predicate, and then consider normal 
entailment in the minimal model. 
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KB  (Flies(tweety) ∨ Flies(chilly))

Ab(chilly), 
Ab(tweety)

Ab(tweety) Ab(chilly)

ϑ1⊨KB 

ϑ3⊨KB 

Neither Chilly nor Tweety can fly

Tweety can fly

Not a model

Minimal Model
Minimal Model

ϑ2⊨KB 

Chilly can fly

Model
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End of Module 4


