
Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Knowledge Representation
and Reasoning

with First Order Logic
Module 3

Deepak Khemani

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Syllabus
Introduction: Overview and Historical Perspective

First Order Logic: A logic with quantified variables.

Module 1 (2 hours): Syntax, Semantics, Entailment and Models, Proof Systems, Knowledge
Representation.

Module 2 (2 hours): Skolemization, Unification, Deductive Retrieval, Forward Chaining,
Backward Chaining

Module 3 (2 hours): Resolution Refutation in FOL, Horn Clauses and Logic
Programming

Text book

Deepak Khemani. A First Course in Artificial Intelligence (Chapters 12 & 13), McGraw Hill
Education (India), 2013.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

A not so easy problem

Given the following knowledge base (in list notation)

{(O A B), (O B C), (not (M A)), (M C)}

What is the KB talking about? What is the semantics?

Depends upon the interpretation ϑ = <D, I> !

Two interpretations….

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Interpretation 1

Domain: Blocks World

Predicate symbols

I(O) = On

I(M) = Maroon

Constant Symbols

A, B, C blocks

A
B

{(O A B), (O B C), (not (M A)), (M C)}

C

is not maroon

is maroon

A is on B

B is on C
?

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Interpretation 2

Domain: People

Predicate symbols
I(O) = LookingAt
I(M) = Married

Constant Symbols
I(A) = Jack
I(B) = Anne
I(C) = John

{(O A B), (O B C), (not (M A)), (M C)}

John

is not married

Anne Jack

is married ?

Anne is looking at John

Jack is looking at Anne

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Goal

Given the KB and the goal

(exists (x y) (and (O x y) (not (M x)) (M y)))

or equivalently (and (O ?x ?y) (not (M ?x)) (M ?y))

…is clearly entailed

Interpretations are,

Blocks World: Is there a not-maroon block on a maroon block?

People: Is a not-married person looking at a married one?

{(O A B), (O B C), (not (M A)), (M C)}

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Incompleteness of Backward and Forward Chaining
Given the KB,

{(O A B), (O B C), (not (M A)), (M C)}

And the Goal,

(and (O ?x ?y) (not (M ?x)) (M ?y))

Neither Forward Chaining nor Backward Chaining
is able to generate a proof.

Both are Incomplete!

Next, we look at a proof method,
the Resolution Refutation System,

that is Sound and Complete for FOL Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Resolution Method in Propositional Logic

The resolution method requires that the formula is in conjunctive normal
form (CNF). A formula F is in CNF if it has the following structure.

F = C1 C2 … Cn

That is the formula is a conjunction of clauses where each clause Ci is a
disjunction of literals,

Ci = Di1 Di2 … Dik(i)

Each literal is either a proposition or the negation of a proposition. A
formula in CNF is also conventionally represented as a set of sets as
follows.

F = {{D11, D12 , … ,D1k(1)}, ..., {Dn1, Dn2 , … ,Dnk(n)}}

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Any formula CNF

Any formula in propositional logic may be converted into CNF by the use
of substitution rules based on the tautological equivalences. Conversion
into CNF generally results in an increase in the size of the formula, often
reaching exponential number of clauses in the number of propositions.

((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨
((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
(α ∨ β) ≡ (α ∧ β) DeMorgan’s Law
(α ∧ β) ≡ (α ∨β) DeMorgan’s Law
(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧
(α ⊃ β) ≡ (β ⊃ α) contrapositive
(α ⊃ β) ≡ (α ∨ β) implication

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Resolution Rule

The single rule used in the refutation method, called the resolution rule, takes two
clauses that have a complimentary literal as follows.

From: R1 R2 ... Rk Q

And: P1 P2 ... Pm Q

Infer: R1 R2 ... Rk P1 P2 ... Pm

Both the literal Q and its negation Q are removed and the remaining literals are
combined to form a new clause, called the resolvent. With the smaller clause the
rule becomes,

From: R Q

And: P Q

Infer: R P

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Validity of the Resolution Rule

The validity of the resolution rule can be established by
showing that adding the resolvent does not change the set of
clauses logically. That is, the sets before and after are
equivalent. It suffices to show that,

((R Q) (P Q)) ≡ ((R Q) (P Q) (R P))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Deduction Theorem

Given a set of premises {α1, α2, …, αN} and the desired goal β,
we want to determine if the formula,

((α1 α2 … αn) β)

is true. This follows from the well known Deduction theorem
that asserts that,

{α1, α2 … ,αn} β iff ((α1 α2 … αn) β)

((α1 α2 … αn) β) is a tautology

iff ((α1 α2 … αn) β) is unsatisfiable

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Proof by Contradiction

Show that ((α1 α2 … αn) β) is unsatisfiable. We convert this
into CNF, the form that is required by the resolution method.

((α1 α2 … αn) β) ≡ ((α1 α2 … αn) β)

≡ ((α1 α2 … αn) β)

≡ (α’1 α’2 … α’n β’)

To generate the input for the resolution method we simply need to
negate the goal and add it to the set of clauses. We may need to
convert each of the premises and the negated goal into the clause
(CNF) form denoted by α’i and β’ in the last line of the transformation.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The basic algorithm

Given a set of clauses, pick any two clauses and add the resolvent to the
set.

If at any time we generate a resolvent that is the empty clause (or null
clause) then the procedure can terminate.

This is because the empty clause, or , evaluates to false. We also use
the symbol □ to stand for the empty or null clause.

An empty clause can be generated from two clauses S and S by the
application of the resolution rule.

Now if a conjunctive formula (the database) has both S and S then it
must be false

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Show that a formula is unsatisfiable

Let the original formula be {P1, P2, …, PN}. Remember this stands for a conjunction
of the N clauses. To this we add a sequence of resolvents R1, R2, R3, … culminating
with . The databases at all stages are logically equivalent, because the resolution
rule is sound.

{P1, P2, …, PN} ≡ {P1, P2, …, PN, R1}

≡ {P1, P2, …, PN, R1, R2}

≡ {P1, P2, …, PN, R1, R2, R3}

≡ {P1, P2, …, PN, R1, R2, R3, …, }

Now since the last set of clauses evaluates to false (because it contains the empty
clause) the set we started with, which is logically equivalent, also evaluates to false.
Thus {P1, P2, …, PN} is false.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Resolution Refutation Method

The Resolution Refutation method was devised by Alan
Robinson in 1965. He showed that the Resolution Refutation
method is complete for deriving the null clause.

A proof by resolution method is a proof by contradiction. We
start with the set of premises, negate the goal and add it as
another clause, and show that it leads to a contradiction
(something that is false or not possible).

If the input formula is unsatisfiable there always exists a
derivation of the null clause.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Alice problem revisited

Atomic sentences in Propositional Logic can stand for anything. Consider,

Alice likes mathematics and she likes stories. If she likes mathematics she likes algebra. If
she likes algebra and likes physics she will go to college. She does not like stories or she
likes physics. She does not like chemistry and history.

Encoding: P = Alice likes mathematics. Q = Alice likes stories. R = Alice likes algebra. S =
Alice likes physics. T = Alice will go to college. U = Alice likes chemistry. V = Alice likes
history.

Then the given facts are, (P ∧ Q)

(P ⊃ R)

((R∧ S) ⊃ T)

(~Q ∨ S)

(~U ∧ ~V)

Recap

If the above sentences are
true is it necessarily true that
“Alice will go to college”?

That is “ Is T true?”

We answer this by producing a
proof (of T)

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Formulating the problem

To show that the following formula is a tautology.

(((P Q) (P R) ((R S) T)
(Q S) (U V)) T)

We take each of the premises and convert it to a clause.
The first premise (P Q) gives us two clauses, as does the
last one. We also add the negation of the goal T as a
clause.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Deriving the null clause

1. P
2. Q
3. P ∨ R
4. R ∨ S ∨ T
5. Q ∨ S
6. U
7. V
8. T negated goal

The resolvents are,
9. R ∨ S from 4, 8
10. R from 1, 3
11. S from 9, 10
12. Q from 11, 5
13. □ from 2, 12
q.e.d

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Proof as a Directed Acyclic Graph (DAG)

PQ ~P ∨ R ~R ∨ ~S ∨ T~Q ∨ S ~U ~V~T

~R ∨ ~S R

~S S

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

An alternative derivation

PQ ~P ∨ R ~R ∨ ~S ∨ T~Q ∨ S ~U ~V~T

R
S

~S ∨ T

T

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Clause form in FOL

A first order formula is in clause form if it is of the following form,

x1 x2 … xV (C1 C2 … CN)

where each Ci is a clause made of disjunction of literals,
and each literal is an atomic formula or its negation

The clause form contains only universal quantifiers. The
consequence of having only universal quantifiers and all of them
bunched up in the left is that one can in fact ignore the
quantifiers during processing. That makes writing programs a
little bit simpler.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Converting to Clause Form

It was shown by Thoralf Skolem that every formula can be converted into the clause form. Take
the existential closure of α. This ensures that there are no free variables in the formula.

1.Standardize variables apart across quantifiers. Rename variables so that the
same symbol does not occur in different quantifiers.

2.Eliminate all occurrences of operators other than , , and .

3.Move all the way in.

4.Push the quantifiers to the right. This ensures that their scope is as tight a
possible.

5.Eliminate .

6.Move all to the left. They can be ignored henceforth.

7.Distribute over .

8.Simplify

9.Rename variables in each clause (disjunction).

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Conversion: an example

(girl(y) x (boy(x) likes(x, y)) x z (boy(x) girl(z) loves(x,z))

1. y((girl(y) x (boy(x) likes(x, y)) x z(boy(x) girl(z) loves(x,z)))
2. y((girl(y) x(boy(x) likes(x,y)) x1 z(boy(x1) girl(z) loves(x1,z)))
3. y((girl(y) x(boy(x) likes(x,y)) x1 z(boy(x1) girl(z) loves(x1,z)))
4.no change
5.no change
6.(girl(sk-y) x(boy(x) likes(x,sk-y))) (boy(sk-x1) girl(sk-z) loves(sk-x1,sk-
z)))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

(girl(y) x (boy(x) likes(x, y)) x z (boy(x) girl(z) loves(x,z))

7.(x((girl(sk-y) (boy(x) likes(x,sk-y)) (boy(sk-x1) girl(sk-
z) loves(sk-x1,sk-z)))
8. (girl(sk-y) boy(sk-x1)) (girl(sk-y) girl(sk-z)) (girl(sk-
y) loves(sk-x1,sk-z)) (boy(x) likes(x,sk-y) (boy(sk-x1))
(boy(x) likes(x,sk-y) girl(sk-z))
(boy(x) likes(x,sk-y) loves(sk-x1,sk-z))
9. no change
10.(girl(sk-y) boy(sk-x1)) (girl(sk-y) girl(sk-z))
(girl(sk-y) loves(sk-x1,sk-z)) (boy(x) likes(x,sk-y) (boy(sk-x1))
(boy(x5) likes(x5,sk-y) girl(sk-z))
(boy(x6) likes(x6,sk-y) loves(sk-x1,sk-z))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Resolution Refutation for FOL

As with the propositional logic the procedure for finding a proof by
the resolution refutation method is as follows,

1.Convert each premise into clause form

2.Negate the goal and convert it into clause form

3.Add the negated goal to the set of clauses

4.Choose two clauses such that two opposite signed literals in
them can be unified

5.Resolve the two clauses using the MGU and add the resolvent to
the set

6.Repeat steps 4-5 till a null resolvent is produced

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Resolution Rule for FOL

For the sake of completeness the resolution rule is defined as follows. A literal is
an atomic formula. A clause is a disjunction of literals. Let Ci and Ck be two
clauses with the structure,

Ci = (L1 L2 … Lk P1 P2 … Pn)

Ck = (R1 R2 … Rs Q1 Q2 … Qt)

If θ is the MGU for { L1, L2, … , Lk, R1, R2, …, Rs} then we can resolve Ci and Ck

to give us the resolvent,

(P1θ P2θ … Pnθ Q1θ Q2θ … Qtθ)

That is we throw away all the positive literals Lj and negative literals Ri, and
combine the remainder after applying the substitution θ.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Socratic argument

The three clauses for the Socratic argument are,

C1 = ((Man ?x)) (Mortal ?x) premise
C2 = (Man Socrates) premise
C3 = ((Mortal Socrates)) negated goal

The following resolvents are generated,

R1 = (Mortal Socrates) C1, C2, {<?x Socrates>}
R2 = C3, R1

Remember that applying a substitution {?x = socrates} is a kind of
instantiation.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Proof as a Directed Acyclic Graph (DAG)

Forward Chaining

(Man Socrates) ((Man ?x)) (Mortal ?x) ((Mortal Socrates))

(Mortal Socrates)

{<?x Socrates>}

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Another derivation

Backward Chaining

Goal:α is like α

(Man Socrates) ((Man ?x)) (Mortal ?x) ((Mortal Socrates))

((Man Socrates))

{<?x Socrates>}

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Alice problem

The clauses are

1.(likes Alice Math)

2.(likes Alice stories)

3.((likes ?x Math)) (likes ?x Algebra)

4.((likes ?y Algebra)) ((likes ?y Physics)) (goesTo ?y College)

5.((likes Alice stories)) (likes Alice Physics)

6.((likes Alice Chemistry))

7.((likes Alice History))

8.((goesTo Alice College))

All but the last clause come from the premises. The last clause is the
negated goal clause.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

A resolution refutation

(likes Alice Math)

(likes Alice stories)

(~(likes ?x Math)) ∨ (likes ?x Algebra)

(~(likes ?y Algebra)) ∨ (~ (likes ?y Physics)) ∨ (goesTo ?y College)

(~ (likes Alice stories)) ∨ (likes Alice Physics)

(~ (likes Alice Chemistry))

(~ (likes Alice History))

(likes Alice Physics)

(~ (goesTo Alice College))

(goesTo Alice College)

(likes Alice Algebra)

?x=Alice

(~(likes Alice Algebra)) ∨ (goesTo Alice College)

?y=Alice

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Incompleteness of Backward and Forward Chaining
Given the KB,

{(O A B), (O B C), (not (M A)), (M C)}

And the Goal,

(and (O ?x ?y) (not (M ?x)) (M ?y))

Neither Forward Chaining nor Backward Chaining
is able to generate a proof.

Both are Incomplete!

Next, we look at a proof method,
the Resolution Refutation System,

that is Sound and Complete for FOL Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

A reolution refutation

1. (O A B)) premise

2. (O B C)) premise

3. ((M A))) premise

4. (M C)) premise

5. ((O ?x ?y)) (M ?x) ((M ?y)) negated goal

A derivation of the null clause is,

6. ((O ?x C)) (M ?x) 4,5, ?y=C

7. ((O A ?y)) ((M ?y)) 3,5, ?x=A

8. ((M B)) 1,7, ?y=B

9. (M B) 2,6, ?x=B

10. 8,9

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Domain: The Blocks World

1. (On A B)) premise

2. (On B C)) premise

3. ((Maroon A))) premise

4. (Maroon C)) premise

5. ((On ?x ?y)) (Maroon ?x) ((Maroon ?y)) negated goal

A derivation of the null clause is,

6. ((On ?x C)) (Maroon ?x) 4,5, ?y=C

7. ((On A ?y)) ((Maroon ?y)) 3,5, ?x=A

8. ((Maroon B)) 1,7, ?y=B

9. (Maroon B) 2,6, ?x=B

10. 8,9

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Domain: People

1. (LookingAt Jack Anne) premise

2. (LookingAt Anne John) premise

3. ((Married Jack)) premise

4. (Married John) premise

5. ((LookingAt ?x ?y)) (Married ?x) ((Married ?y)) negated goal

A derivation of the null clause is,

6. ((LookingAt ?x John)) (Married ?x) 4,5, ?y=John

7. ((LookingAt Jack ?y)) ((Married ?y)) 3,5, ?x=Jack

8. ((Married Anne)) 1,7, ?y=Anne

9. (Married Anne) 2,6, ?x=Anne

10. 8,9

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Logic Programming

• Robert Kowalski put forward the idea that logic can be used for
every day computing.

– “The driving force behind logic programming is the idea that a single
formalism suffices for both logic and computation, and that logic subsumes
computation.”

• His idea is that the programmer should only focus on the logical
relation between Input and Output, and that a machine
(computer program) should figure out the control of flow.

– Program = Logic + Control

• The basis of logic programming languages like Prolog.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Addition

Consider an infinite domain consisting of one constant 0 and one
function “s” of arity 1. The elements of the domain are {0, s(0),
s(s(0)), s(s(s(0))),…. }. We can call this the domain of Natural
Numbers.

The following statements define addition of two elements.

x Plus(0, x, x)

x,y,z (Plus(x, y, z) Plus(s(x), y, s(z)))

Plus(x, y, z) is interpreted as x+y=z. This small KB entails the entire
set of addition relation

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Addition

x Plus(0, x, x)

x,y,z (Plus(x, y, z) Plus(s(x), y, s(z)))

Converting the KB in to clause form we get,

Plus(0, ?x, ?x)
~Plus(?x, ?y, ?z) ∨ Plus(s(?x), ?y, s(?z))

Let us consider two queries

Plus(2,5,7) written as Plus(s(s(0)), s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

and xPlus(2,5,x) written as xPlus(s(s(0)), s(s(s(s(s(0))))), x)

We negate the queries and use the resolution method

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Query: Is 2+5=7?

Plus(0, ?x, ?x)

~Plus(?x, ?y, ?z) ∨ Plus(s(?x), ?y, s(?z)) ~Plus(s(s(0)), s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

{<?x, s(0)>,
<?y, s(s(s(s(s(0)))))>,
<?z, s(s(s(s(s(s(0))))))>} ~Plus(s(0), s(s(s(s(s(0))))), s(s(s(s(s(s(0)))))))

{<?x, s(s(s(s(s(0)))))>}

~Plus(0, s(s(s(s(s(0))))), s(s(s(s(s(0))))))

{<?x, 0>,
<?y, s(s(s(s(s(0)))))>,
<?z, s(s(s(s(s(0)))))>}

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Using numerals

Plus(0, ?x, ?x)

~Plus(?x, ?y, ?z) ∨ Plus(s(?x), ?y, s(?z))
~Plus(2, 5, 7)

{<?x, 1>,
<?y, 5>,
<?z, 6>}

~Plus(1, 5, 6)

~Plus(0, 5, 5)

{<?x, 5>}

{<?x, 0>,
<?y, 5>,
<?z, 5>}

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Existential query: Is there an X such that 2+5=X?

Plus(0, ?x, ?x)

~Plus(?x, ?y, ?z) ∨ Plus(s(?x), ?y, s(?z)) ~Plus(s(s(0)), s(s(s(s(s(0))))), ?u)

{<?x, s(0)>,
<?y, s(s(s(s(s(0)))))>,
<?z, ?v>} <?u, s(?v)> ~Plus(s(0), s(s(s(s(s(0))))), ?v)

~Plus(0, s(s(s(s(s(0))))), ?w)

{<?x, s(s(s(s(s(0)))))>, <?w, s(s(s(s(s(0)))))> }

{<?x, 0>,
<?y, s(s(s(s(s(0)))))>,
<?z, ?w>, <?v, s(?w)>}

Answer: ?u=s(s(s(s(s(s(s(0)))))))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Using the Answer Predicate A(?u)

Plus(0, ?x, ?x)

~Plus(?x, ?y, ?z) ∨ Plus(s(?x), ?y, s(?z)) ~Plus(s(s(0)), s(s(s(s(s(0))))), ?u) ∨ A(?u)

{<?x, s(0)>,
<?y, s(s(s(s(s(0)))))>,
<?z, ?v>} <?u, s(?v)> ~Plus(s(0), s(s(s(s(s(0))))), ?v) ∨ A(s(?v))

~Plus(0, s(s(s(s(s(0))))), ?w) ∨ A(s(s(?w)))

{<?x, s(s(s(s(s(0)))))>, <?w, s(s(s(s(s(0)))))> }

{<?x, 0>,
<?y, s(s(s(s(s(0)))))>,
<?z, ?w>, <?v, s(?w)>}

A(s(s(s(s(s(s(s(0)))))))))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Horn Clauses
A clause with at most one positive literal is a Horn clause (named after the mathematician
Alfred Horn).

(P ∨ Q ∨ R ∨ S ∨ T) or

((P ?x) ∨ (Q ?x) ∨ (R ?x) ∨ (S ?x)) ∨ (T ?x)

Equivalently they can be written as.

(P ∧ Q ∧ R ∧ S) ⊃ T or

((P ?x) ∧ (Q ?x) ∧ (R ?x) ∧ (S ?x)) ⊃ (T ?x)

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Positive Definite Horn Clauses

A positive Horn clause has exactly one positive literal

Facts have no negative literals

(T ?x) or (T a)

Rules have some number of negative literals

((P ?x) (Q ?x) (R ?x) (S ?x)) (T ?x)

((P ?x) (Q ?x) (R ?x) (S ?x)) (T ?x)

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Prolog program is a set of Positive Definite Horn Clauses

In Prolog upper case arguments are variables and lower case
arguments are constants. Further the syntax is different.

(T a) Fact

((P ?x) (Q ?x) (R ?x) (S ?x)) (T ?x) Rule

T(a). Fact

T(X) :- P(X), Q(X), R(X), S(X). Rule

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

A Prolog KB (program)

outingPlan(X,Y,Z) :- eveningPlan(X), moviePlan(Y), dinnerPlan(Z).
eveningPlan(X) :- outing(X), likes(friend, X).
moviePlan(X) :- movie(X), likes(friend,X).
dinnerPlan(X) :- restaurant(X), likes(friend,X).
outing(mall).
outing(beach).
movie(theMatrix).
movie(artificialIntelligence).
movie(bhuvanShome).
movie(sevenSamurai).
restaurant(pizzaHut).
restaurant(saravanaBhavan).
likes(friend, beach).
likes(friend, theMatrix).
likes(friend, bhuvanShome).
likes(friend, sarvanaBhavan).

(if (and (restaurant ?x) (likes friend ?x)) (dinnerPlan ?x))

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Negative Horn Clauses

• A Horn clause with no positive literal is a negative clause

• In Prolog such clause come only from a negated goal or query

• The null clause is a negative clause (no positive literal).

• The resolution rule has the following resolvents

Positive clause and positive clause positive clause

(S ?x) (T ?x) and (Q ?x) (S ?x) (T ?x) (Q ?x)

Positive clause and negative clause negative clause

(S ?x) (T ?x) and (Q ?x) (S ?x) (T ?x) (Q ?x)

Two negative cannot be resolved

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

An SLD derivation

• A Prolog program is a set of positive definite clauses

• The negated goal is the only negative clause

• An SLD (selected literal, linear structure, definite clauses)
derivation has the following structure

– the first resolvent has one parent from the goal and one from
the program

– each resolvent in the derivation is negative (this is equivalent
to doing backward chaining to generate a sub-goal)

– the latest resolvent becomes one of the parents, and the
other parent is a positive clause from the program

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

An SLD derivation with Horn Clauses

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Eliminating positive resolvents

The figure on the left has a positive resolvent, shown in the shaded box. The
equivalent derivation on the right has only negative resolvents. One can
transform derivation with positive resolvents to one with only negative
resolvents by picking the lowest positive resolvent and applying a
transformation like the one above.

~F ∨ ~C ∨ D~E ∨ C

~E ∨ ~F ∨ D

~E ∨ ~F ∨ ~A

~D ∨ ~A ~F ∨ ~C ∨ D~E ∨ C

~F ∨ ~C ∨ ~A

~E ∨ ~F ∨ ~A

~D ∨ ~A

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

AN SLD derivation for the Alice problem

PQ ~P ∨ R ~R ∨ ~S ∨ T~Q ∨ S ~U ~V~T

~R ∨ ~S

~P ∨ ~S

~ S
~Q

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Lists are binary trees

The tree structures for the lists [A B], [A B C D], and [[A B] C] respectively. The circular node
is also known as the dotted pair or the cons pair. The left child points to the head of the list
and the right child to a list that is the tail of the given list.

A

B B

[A B] = (cons (A cons (B nil)))

C BA

B B

[[A B] C] = (cons (cons A (cons B nil)) (cons (C nil)))

A

B

C

D B

[A B C D] = (cons A(cons B (cons C (cons D nil))))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Computing Append ([A B] [C D] ?x)

~(append ?x1 ?x2 ?y) ∨ (append (cons ?c ?x1) ?x2 (cons ?c ?y)(append () ?z ?z)

~(append (cons A (cons B ()) (cons C (cons D ()) ?x) ∨ (Answer ?x)

~(append (cons B ()) (cons C (cons D ()) ?y1) ∨ (Answer (cons A ?y1))

{?c=A, ?x1=(cons B ()),
?x2= (cons C (cons D ()),
?x= (cons A ?y1), ?y=?y1}

~(append (() (cons C (cons D ()) y2) ∨ (Answer (cons A (cons B ?y2)))

{?c=B, ?x1=(), ?x2= (cons C (cons D ()),
?y1= (cons B ?y2), ?y=?y2}

(Answer (cons A (cons B (cons C (cons D ())))))
{?z=(cons C (cons D ()),
?y2=(cons C (cons D ())}

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

End of Module 3

