
Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Knowledge Representation
and Reasoning

with First Order Logic
Module 2

Deepak Khemani

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Syllabus
Introduction: Overview and Historical Perspective

First Order Logic: A logic with quantified variables.

Module 1 (2 hours): Syntax, Semantics, Entailment and Models, Proof Systems, Knowledge
Representation.

Module 2 (2 hours): Skolemization, Unification, Deductive Retrieval, Forward
Chaining, Backward Chaining

Module 3 (2 hours): Resolution Refutation in FOL, Horn Clauses and Logic Programming

Module 4 (2 hours): Variations on FOL

Text book

Deepak Khemani. A First Course in Artificial Intelligence (Chapters 12 & 13), McGraw Hill
Education (India), 2013.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Knowledge and Reasoning – necessary for intelligence

What does the agent know
and

what else does the agent know as a

consequence of what it knows?
Module 2

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Reasoning

The manipulation of symbols in a meaningful manner.

Maths is replete with algorithms we use –

• Addition and multiplication of multi-digit numbers

• Long division

• Solving systems of linear equations

• Fourier transforms, convolution…

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Syllogism

The Greek syllogism embodies the notion of formal logic.

An argument is valid if it conforms to a valid form

All men are mortal

Socrates is a man

Socrates is mortal

All cities are congested

Chennai is a city

Chennai is congested

All politicians are honest

Sambit is a politician

Sambit is honest

In a valid argument

IF the premises are true

THEN the conclusions are necessarily trueThe Socratic argument

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Some common rules of inference

From α ⊃ β

and α .

Infer β

Modus Ponens (MP)

From α ⊃ β

and ∼β .

Infer ∼α

Modus Tollens (MT)

From α ∧ β .

Infer α

Simplification (S)

From α ∨ β

and ∼α .

Infer β

Disjuncuntive
Syllogism (DS)

From α .

Infer α∨ β

Addition (A)

From α

and β .

Infer α ∧ β

Conjunction (C)

From α ⊃ β

and β ⊃ γ

Infer α ⊃ γ

Hypothetical
Syllogism (HS)

From (α ⊃ β) ∧ (γ ⊃ δ)

and α ∨ γ .

Infer β∨ δ

Constructive Dilemma (CD)

From (α ⊃ β) ∧ (γ ⊃ δ)

and ∼β ∨ ∼δ .

Infer ∼α ∨ ∼γ

Destructive Dilemma (DD)

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Proof
Goal α

Applications of rules of inference

KB

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Semantics (Propositional Logic)

Atomic sentences in Propositional Logic can stand for anything. Consider,

Alice likes mathematics and she likes stories. If she likes mathematics she likes algebra. If
she likes algebra and likes physics she will go to college. She does not like stories or she
likes physics. She does not like chemistry and history.

Encoding: P = Alice likes mathematics. Q = Alice likes stories. R = Alice likes algebra. S =
Alice likes physics. T = Alice will go to college. U = Alice likes chemistry. V = Alice likes
history.

Then the given facts are, (P ∧ Q)

(P ⊃ R)

((R∧ S) ⊃ T)

(~Q ∨ S)

(~U ∧ ~V)

Recap

If the above sentences are
true is it necessarily true that
“Alice will go to college”?

That is “ Is T true?”

We answer this by producing a
proof (of T)

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Proofs in Propositional Logic

1. (P ∧ Q) premise

2. (P ⊃ R) premise

3. ((R∧ S) ⊃ T) premise

4. (Q ∨ S) premise

5. P 1, simplification

6. Q 1, simplification

7. R 2, 5, modus ponens

8. S 4, 6, disjunctive syllogism*

9. (R∧ S) 7, 8, conjunction

10. T 3, 9, modus ponens

*Strictly speaking a substitution step Q ≡ Q has to be applied before
disjunctive syllogism is applicable.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The First Order version
Let us rephrase our example (Alice) problem in first order terminology.

• Alice likes mathematics and she likes stories.
• If someone likes mathematics she likes algebra[1].
• If someone likes algebra and likes physics she will go to college.
• Alice does not like stories or she likes physics.
• Alice does not like chemistry and history.”

We can formalize the statements in FOL as follows.

1. likes(Alice, Math) ∧ likes(Alice, stories)
2.∀x(likes(x, Math) ⊃ likes(x, Algebra))
3.∀x((likes(x, Algebra) ∧ likes(x, Physics)) ⊃ goesTo(x, College))
4.likes(Alice, stories) ∨ likes(Alice, Physics)
5.likes(Alice, Chemistry) ∧ likes(Alice, History)

[1] Here we must emphasize that she stands for both she and he.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

FOL: Rules of Inference

The propositional logic rules we saw earlier are valid in FOL as well. In addition we need
new rules to handle quantified statements. The two commonly used rules of inference are,

x P(x) where a ∈ C Universal Instantiation (UI)

P(a)

P(a) where a ∈ C Generalization

x P(x)

Examples: x (Man(x) ⊃ Mortal(x))

(Man(Socrates) ⊃ Mortal(Socrates))

(Man(Socrates) ⊃ Mortal(Socrates))

x (Man(x) ⊃ Mortal(x))

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The FOL Proof

1.likes(Alice, Math) ∧ likes(Alice, stories)
2.∀x(likes(x, Math) ⊃ likes(x, Algebra))
3.∀x((likes(x, Algebra) ∧ likes(x, Physics)) ⊃ goesTo(x, College))
4.likes(Alice, stories) ∨ likes(Alice, Physics)
5.likes(Alice, Chemistry) ∧ likes(Alice, History)

We can now generate a proof that is analogous to the proof in propositional logic.

6.likes(Alice, Math) 1, simplification
7. likes(Alice, stories) 1, simplification
8. (likes(Alice, Math) ⊃ likes(Alice, Algebra)) 2, UI
9. likes(Alice, Algebra)) 6, 8, modus ponens
10. likes(Alice, Physics) 4, 7, disjunctive syllogism
11. ((likes(Alice, Algebra) ∧ likes(Alice,Physics)) 9, 10, conjunction
12. ((likes(Alice, Algebra) ∧ likes(Alice,Physics)) ⊃ goesTo(Alice,College)) 3, UI
13. goesTo(Alice, College) 12, 11, modus ponens

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Forward Chaining in FOL

x (P(x) ⊃ Q(x))

P(a) ⊃ Q(a)

UI

P(a) Q(a)
MP

Forward chaining in FOL is a two step process. First a relevant instantiation of a rule is
created. Then the rule instance is used by modus ponens to produce the consequent.

The use of Implicit Quantifier Notation collapses this two step inference into one.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

List notation

Standard mathematical notation

1. x (Man(x) Human(x)) : all men are human beings

2. Happy(suresh) Rich(suresh) : Suresh is rich or happy

3. x (CitrusFruit(x) Human(x)) : all citrus fruits are non-human

4. x (Man(x) Bright(x)) : some men are bright

List notation (a la Charniak & McDermott, “Artificial Intelligence”)

1.(forall (x) (if (man x) (human x)))

2.(or (happy suresh) (rich suresh))

3.(forall (x) (if (citrusFruit x) (not (human x))))

4.(exists (x) (and (man x) (bright x)))

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Implicit Quantifier notation
Prefix universally quantified variables with a “?”. Replace existentially quantified
variables not in the scope of a universal quantified with a Skolem constant (named
after the mathematician Thoralf Skolem)

1.Man(?x) Human(?x) : all men are human beings

2.Happy(suresh) Rich(suresh) : Suresh is rich or happy

3.CitrusFruit(?x) Human(?x) : all citrus fruits are non-human

4.Man(sk-11) Bright(sk-11)) : some men are bright

List notation

1. (if (man ?x) (human ?x))

2. (or (happy suresh) (rich suresh))

3. (if (citrusFruit ?x) (not (human ?x)))

4. (and (man sk-11) (bright sk-11))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Unifier: Substitution

A substitution is a set of <variable value> pairs denoting the
values to be substituted for the variables.

A unifier for two formulas α and β is a substitution that makes
the two formulas identical. We say that α unifies with β. A
unifier unifies a set of formulas {α1, α2, …, αN} if,

α1 = α2 = … = αN = φ

We call the common reduced form φ as the factor.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Modified Modus Ponens (MMP)

P(?x) ⊃ Q(?x)

P(a) Q(a)

MMP

A substitution is a set of <variable value> pairs denoting the values to be
substituted for the variables.

A substitution is a unifier for two (or more) formulas and if when applied
it makes the two formulas identical. That is, =

MPP: From () and infer where is a unifier* for and and is
the formula obtained by applying the substitution* to .

 = {<?x, a>}

For example,

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

MPP: an example

Thus if

α = (Sport(tennis) Likes(Alice, tennis))

β δ = (Sport(?y) Likes(?x, ?y)) Watches(?x, ?y)

then α unifies with β with the substitution θ = {<?x, Alice>, <?y, tennis>}
given above, and one can infer

δθ = Watches(?x, ?y)θ = Watches(Alice, tennis)

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

A shorter proof with Modified Modus Ponens

1. likes(Alice, Math) ∧ likes(Alice, stories)
2. likes(?x, Math) ⊃ likes(?x, Algebra)
3. (likes(?x, Algebra) ∧ likes(?x, Physics)) ⊃ goesTo(?x, College)
4. likes(Alice, stories) ∨ likes(Alice, Physics)
5. likes(Alice, Chemistry) ∧ likes(Alice, History)

6. likes(Alice, Math) 1, simplification
7. likes(Alice, stories) 1, simplification
8. likes(Alice, Algebra) 6, 2, MPP
9. likes(Alice, Physics) 4, 7, disjunctive syllogism
10. ((likes(Alice, Algebra) ∧ likes(Alice,Physics)) 9, 10, conjunction
11. goesTo(Alice, College) 3, 10, MPP

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

More general and more specific sentences

We say that a sentence α is more general than sentence β if there exists a
non-empty substitution λ such that αλ = β.

A more general sentence entails a less general one (generalized UI)

Everyone loves a good teacher (good-teacher ?x) (loves ?y ?x)

is more general than

Suresh loves a good a teacher (good-teacher ?x) (loves suresh ?x)

and

Everyone’s dad loves a good teacher (good-teacher ?x) (loves (dad ?y) ?x)

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

General Inferences and Specific Inferences

(GreaterOrEqual ?x 0)

(if (GreaterOrEqual ?y ?z) (SmallerOrEqual ?z ?y))

 = {<?x, 7>, <?y, 7>, <?z, 0>}

(SmallerOrEqual 0 7)

 = {<?y, ?x>, <?z, 0>}

(SmallerOrEqual 0 ?x)

Most general
conclusion

Most General Unifier
(MGU)

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Unification Algorithm

• The unification algorithm takes two or more formulas are finds
the most general unifier for the formulas

• In the list notation for formulas there are three kinds of elements
– lists

– constants

– variables

• Two constants can only unify (match) if identical

• Two lists are unified element by element building up the
substitution as we scan the lists.

• A variable can match another variable, or a constant, or a list not
containing the variable

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Standardizing variables apart

Consider the two formulas

(GreaterOrEqual ?x 0)

(if (GreaterOrEqual 7 ?x) (SmallerOrEqual ?x 7))

Clearly one cannot substitute ?x with both 0 and 7

Solution: Rename variables differently in each formula.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Standardizing variables apart

(GreaterOrEqual ?z 0)

(if (GreaterOrEqual 7 ?x) (SmallerOrEqual ?x 7))

Solution: Rename variables differently in each formula.

 = {<?z, 7>, <?x, 0>}

… and one can now derive the conclusion (SmallerOrEqual 0 7)

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Unification Algorithm

Unify(arg1, arg2)

Return SubUnify(arg1, arg2, ())

Call an auxiliary function SubUnify adding a third argument.

- to build the substitution piece by piece

- initially is the empty list

Algorithm Unify returns the MGU for arg1 and arg2

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Algorithm SubUnify (arg1, arg2,)

1. If arg1 and arg2 are both constants then they must be
equal (else return NIX)

2. If arg1 is a variable, call VarUnify(arg1, arg2,)

3. If arg2 is a variable, call VarUnify(arg2, arg1,)

/* at this point both must be lists */

4. If Length(arg1) ≠ Length(arg2) return NIX

5. For each corresponding element in arg1 and arg2
Call SubUnify recursively building up the substitution

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Algorithm VarUnify(var, arg,)

1. If var exists* in arg return NIX

2. If var has a value <var, pat> in
return SubUnify(pat, arg)

3. If var = arg return
4. Augment {<var, arg>} and return

*Should not be able to unify ?x with (plus ?x 1) for example

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Skolemization: existentially quantified variables

When the existential quantifier is not in the scope of any universal
quantifier, then the variable it quantifies is replaced by a Skolem constant.

For example the statements,

(exists (z) (and (Student z) (Bright z))
z(Student(z) Bright(z))

(exists (y) (and (Girl y) (forall (x) (if (Boy x) (Likes x y)
y(Girl(y) x(Boy(x) Likes(x, y))

are skolemized as,
(and (Student sk1) (Bright sk1))

(Student(sk1) Bright(sk1))
(and (Girl sk2) (if (Boy ?x) (Likes ?x sk2))

((Girl sk2) ((Boy ?x) (Likes ?x, sk2)))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Skolemization: existential variables within universal quantifiers

When the existential quantifier is in the scope of one or more universal quantifiers
then the existentially quantified variable is a Skolem function of the corresponding
universally quantified variables.
For example the statements,

(forall (x y) (exists (z) (and ((LessThan x z) (LessThan y z))))
x y z (LessThan(x, z) LessThan(y, z))

(forall (x) (if (Boy x) (exists (y) (and (Girl y) (Likes x y))
x (Boy(x) y(Girl(y) Likes(x, y))

are skolemized as,
(and (LessThan ?x (sk57 ?x ?y)) (LessThan ?y (sk57 ?x ?y)))

LessThan(?x sk57(?x ?y)) LessThan(?y sk57(?x ?y))
(if (Boy ?x) (and (Girl (sk16 ?x)) (Likes ?x (sk16 ?x))))

(Boy ?x) (Girl(sk16 ?x) Likes (?x (sk16 ?x))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

FOL: Rules of Substitution

The following rules of substitution are also useful,

Moving a negation operator inside changes the quantifier

x α ≡ x α DeMorgan’s law

x α ≡ x α DeMorgan’s law

Two quantifiers of the same type are commutative

x y α ≡ y x α

x y α ≡ y x α

Recap

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The real nature of a variable

Whether a variable is universally quantified or existentially quantified has to be decided
carefully. One must keep in mind that a negation sign influences the nature of the quantifier.

Consider the formalization of “An immortal man does not exist” which is another way

of saying that all men are mortal.

 x (Man(x) Mortal(x))

What is the nature of the variable x?

On the surface it is bound by an existential quantifier so one might mistakenly skolemize
it as ((Man sk11) ∧ (Mortal sk11)) but that only talks of a specific, albeit unspecified,

individual or individuals. The correct way to skolemize a formula is to first push the
negation sign inside. That gives us the form,

x(Man(x) Mortal(x))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The real nature of a variable
The following sentence reads “If there exists a number that is even and odd then the
Earth is flat” and is formalized as,

(x (Number(x) Even(x) Odd(x))) Flat(Earth)

However if we rewrite the equivalent formulas as,

(x (Number(x) Even(x) Odd(x))) Flat(Earth)

≡ x((Number(x) Even(x) Odd(x))) Flat(Earth)

≡ x((Number(x) Even(x) Odd(x)) Flat(Earth))

≡ x((Number(x) Even(x) Odd(x)) Flat(Earth))

We can see that x is really universally quantified variable.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The real nature of a variable

The following example that asserts “A detective who has a sidekick is
successful” also illustrates the point that a quantifier in the antecedent part
of an implication statement is masquerading as the other quantifier.

x (Detective(x) y Sidekick(y,x)) Successful(x))

≡ x (Detective(x) y Sidekick(y,x) Successful(x))

≡ x (Detective(x) y Sidekick(y,x) Successful(x))

≡ x y (Detective(x) Sidekick(y,x) Successful(x))

≡ x y ((Detective(x) Sidekick(y,x)) Successful(x))

≡ x y ((Detective(x) Sidekick(y,x)) Successful(x))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Inference with a Skolem constant

In the unification algorithm the Skolem constants are simply treated as constants.

From x Even(x)
And x (Even(x) Odd(x))

Infer x Odd(x)

When we skolemize the premises we get,

Even (SomeEvenNumber)
Even (?x) Odd(?x)

With the substitution {?x= SomeEvenNumber } we can infer

Odd(SomeEvenNumber).

A constant can also be thought of as a function of arity 0.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Inference with a Skolem constant

In the unification algorithm the Skolem functions are simply treated as functions.

From x y Loves(x,y) Everyone loves someone
And x y (Loves(x,y) CaresFor(x,y))

If someone loves somebody then they care for them

Infer x y CaresFor(x,y) Everyone cares for someone

When we skolemise the premises we get,
Loves (?x (sk7 ?x))
Loves (?z ?y) CaresFor (?z ?y)

Applying the substitution {?z=?x, ?y=(sk7 ?x)} we get the conclusion,

CaresFor (?x (sk7 ?x))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Rule Based Expert Systems

In the 1980’s the idea that you can capture the knowledge of a
human expert in the form of rules led to the development of Expert
Systems. Rule Based Systems or Production Systems have been
used in general to decompose a problem and address it in parts. In
its most abstract form a rule or a production is a statement of the
form,

Left Hand Side Right Hand Side

in which the computation flows from the left hand side to the right
hand side, that is Forward Chaining

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Forward Chaining Rule Based Systems

Productions or rules can be used both in a forward direction and
backward direction. In the forward direction it is in a data driven
manner. The production then looks like,

Pattern Action

where the pattern is in the given database. Thus a rule based
system looks at a part of a state, and triggers some action when a
pattern is matched. Usually the actions are to make some changes
in the database describing the state.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

An example of a rule
One could write a rule to sort an array of numbers as follows

(p interchange
(array ^index i ^value N)
(array ^index {j > i} ^value {M < N}

(modify 1 ^value M)
(modify 2 ^value N))

We have used above the notation of the language OPS5 (Forgy, 1981), one of the first
rule based languages developed at Carnegie Mellon University.

(rule interchange
IF there is an element at index i with value N,

AND IF there is an element at index j > i with value M < N
THEN

modify array(i) to hold M,
AND modify array(j) to hold N)

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

XCON

[1] McDermott's 1980 paper on R1 won the AAAI Classic Paper Award in 1999. According to legend, the name of R1 comes from McDermott, who
supposedly said as he was writing it, "Three years ago I wanted to be a knowledge engineer, and today I are one." - http://en.wikipedia.org/wiki/Xcon

Originally called R1[1] the XCON system was a forward chaining rule based system to help
automatically configure computer systems (McDermott, 1980a; 1980b). XCON (for eXpert
CONfigurer) was built for the computer company Digital Equipment Corporation, and
helped choose components for their VAX machines. XCON was implemented in the rule
based language OPS5. By 1986 XCON had been used successfully at DEC processing
over 80,000 orders with an accuracy over 95%.

XCON is a forward chaining rule based system that worked from requirements towards
configurations, without backtracking. It needed two kinds of knowledge (Jackson, 1986),

• knowledge about components, for example voltage, amperage, pinning-type and
number of ports, and

• knowledge about constraints, that is, rules for forming partial configurations of
equipment and then extending them successfully.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

XCON: Component Knowledge

XCON stored the component knowledge in a separate database, and
used its production system architecture to reason about the
configuration. The following is an example of a record that describes
a disk controller.

RK611*
CLASS: UNIBUS MODULE
TYPE: DISK DRIVE
SUPPORTER: YES
PRIORITY LEVEL: BUFFERED NPR
TRASFER RATE: 12 ...

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

XCON: Rules
Constraints knowledge is specified in the form of rules. The LHS describes patterns in
partial configurations that can be extended, and the RHS did those extensions. The
following is an English translation of an XCON rule taken from (Jackson, 1986).

DISTRIBUTE-MB-DEVICES-3
IF the most current active context is distributing massbus devices
& there is a single port disk drive that has not been assigned to a massbus
& there is no unassigned dual port disk drives
& the number of devices that each massbus should support is known
& there is a massbus that has been assigned at least one disk drive and that

should support additional disk drives
& the type of cable needed to connect the disk drive to the previous device on

the disk drive is known
THEN

assign the disk drive to the massbus

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Backward Chaining

P(?x) ⊃ Q(?x)

Goal: P(a) Goal: Q(a)

A goal is said to be solved if it matches a fact in the KB. In the above example
we start with the goal of proving Q(a) and reduce to the sub-goal P(a), which
is satisfied in the KB.

In Backward Chaining we move from the goal to be proved towards facts.
From () and Goal: infer Goal: where is a unifier* for and and
 is the formula obtained by applying the substitution* to .

 = {<?x, a>}
P(a)

For example,

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Backward Reasoning

• Backward reasoning is goal directed

• We only look for rules for which the
consequent matches the goal.

• This results in low branching factor in the
search tree
– which rule to apply from the matching set of rules?

• Foundations of Logic Programming
– the programming language Prolog

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Deductive Retrieval

The goal need not be a specific proposition

It can be have variables as well

Formulas with variables can match facts.

For example the goal Goal: Mortal(?z)

can be interpreted as an existential statement

Is the statement z Mortal(z) true?

The answer, in addition to yes or no, can also return a value
for the variable for which it is true.

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Deductive Retrieval: 3 possible answers

Man(?x) ⊃ Mortal(?x)

Goal: Man(?z) Goal: Mortal(?z)
 = {<?x, ?z>}

Man(Socrates)

Man(Plato)

Man(Aristotle)

 = {<?z, Aristotle>}

 = {<?z, Plato>}

 = {<?z, Socrates>}

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Backward Chaining (Propositional Logic)

Alice likes mathematics (P) and she likes stories (Q). If she likes mathematics (P) she likes algebra (R). If
she likes algebra (R) and likes physics (S) she will go to college (T). She does not like stories (Q) or she
likes physics (S). She does not like chemistry (U) and history (V).

Then the given facts are, (P Q), (P R), ((R S) T), (~Q S), (~U ~V)

“Is T true?”

We answer this by
backward chaining.

Equivalently
1.P
2.Q
3.(P R)
4.((R S) T)
5.(Q S)
6.~U
7.~V

Goal Set

{T} Given goal
{R, S} from 4
{P, S} from 3
{S} 1
{Q} from 5
{ } 2, success

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Backward Chaining with Conjunctive Antecedents

A goal (R ?x) with a rule (if (and (P ?x) (Q ?x)) (R ?x))

A goal which matches the consequent of a rule reduces
to the antecedents in the rule.

{(R ?x)}

{(P ?x) (Q ?x)}

(R ?x)

(Q ?x)(P ?x)

An AND node

To solve R
solve both P & Q

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Goal Trees

Consider the following KB in skolemized list notation, and the goal (niceToy ?z)

Rule1: (if (and (green ?x) (circle ?x)) (niceToy ?x))
Rule2: (if (and (red ?x) (square ?x)) (niceToy ?x))

(green A)
(green B)
(circle C)
(red C)
(red D)
(square D)
(circle E)

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Goal tree = AND/OR tree

Rule1

(circle ?x)(green ?x)

(niceToy ?x)

Rule2

(square ?x)(red ?x)

(green A) (green B) (circle C) (circle E) (red C) (red D) (square D)

OR

AND

OROROR

AND

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Depth First Search Goal Set

{(niceToy ?x)}
{(green ?x), (circle ?x)} Rule1
{(circle A) ?x=A FAIL
{(circle B)} ?x=B FAIL
{(red ?x), (square ?x)} Rule2
{(square C)} ?x=C FAIL
{(square D)} ?x=D
{ } Success

Rule1

(circle ?x)(green ?x)

(niceToy ?x)

Rule2

(square ?x)(red ?x)

(green A) (green B) (circle C) (circle E) (red C) (red D) (square D)

OR

AND

OROROR

AND

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

AND/OR tree: Solution = subtree

Rule1

(circle ?x)(green ?x)

(niceToy ?x)

Rule2

(square ?x)(red ?x)

(green A) (green B) (circle C) (circle E) (red C) (red D) (square D)

OR

AND

OROROR

AND

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

A Prolog KB (program)

outingPlan(X,Y,Z) :- eveningPlan(X), moviePlan(Y), dinnerPlan(Z).
eveningPlan(X) :- outing(X), likes(friend, X).
moviePlan(X) :- movie(X), likes(friend,X).
dinnerPlan(X) :- restaurant(X), likes(friend,X).
outing(mall).
outing(beach).
movie(theMatrix).
movie(artificialIntelligence).
movie(bhuvanShome).
movie(sevenSamurai).
restaurant(pizzaHut).
restaurant(saravanaBhavan).
likes(friend, beach).
likes(friend, theMatrix).
likes(friend, bhuvanShome).
likes(friend, sarvanaBhavan).

(if (and (restaurant ?x) (likes friend ?x)) (dinnerPlan ?x))

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

outingPlan(X,Y,Z)

likes(friend,X)

restaurant(saravanaBhavan)

movie(bhuvanShome)

movie(sevenSamurai)

outing(X)

eveningPlan(X)
Movie

Dinner

likes(friend,Y)movie(Y) likes(friend,Z)restaurant(Z)

outing(beach)

likes(friend, beach)

movie(theMatrix)

movie(artificialIIntelligence)

likes(friend, theMatrix)

restaurant(pizzaHut)

likes(friend,saravanaBhavan)

outing(mall)

likes(friend, bhuvanShome)

The goal tree

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Backward Chaining: Depth First Search
{outingPlan(X,Y,Z)} theta = { }
{eveningPlan(X), moviePlan(Y), dinnerPlan(Z)} theta = { }
{outing(X), likes(friend, X), moviePlan(Y), dinnerPlan(Z)} theta = { }
{likes(friend, mall), moviePlan(Y), dinnerPlan(Z)} theta = {X=mall}
{“fail”, moviePlan(Y), dinnerPlan(Z)} theta = {X=mall}
{outing(X), likes(friend, X), moviePlan(Y), dinnerPlan(Z)} theta = { }backtrack
{likes(friend, beach), moviePlan(Y), dinnerPlan(Z)} theta = {X=beach}
{moviePlan(Y), dinnerPlan(Z)} theta = {X=beach}
{movie(Y), likes(friend,Y), dinnerPlan(Z)} theta = {X=beach}
{likes(friend, theMatrix), dinnerPlan(Z)} theta = {X=beach, Y=theMatrix}
{dinnerPlan(Z)} theta = {X=beach, Y=theMatrix}
{restaurant(Z), likes(friend,Z)} theta = {X=beach, Y=theMatrix}
{likes(friend,pizzaHut)} theta = {X=beach, Y=theMatrix, Z=pizzaHut}
{“fail”} theta = {X=beach, Y=theMatrix, Z=pizzaHut}
{restaurant(Z), likes(friend,Z)} theta = {X=beach, Y=theMatrix} backtrack
{likes(friend, saravanaBhavan)} theta = {X=beach, Y=theMatrix, Z= saravanaBhavan }
{ } theta = {X=beach, Y=theMatrix, Z= saravanaBhavan }

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

outingPlan(X,Y,Z)

likes(friend,X)

restaurant(saravanaBhavan)

movie(bhuvanShome)

movie(sevenSamurai)

outing(X)

eveningPlan(X)
Movie

Dinner

likes(friend,Y)movie(Y) likes(friend,Z)restaurant(Z)

outing(beach)

likes(friend, beach)

movie(theMatrix)

movie(artificialIIntelligence)

likes(friend, theMatrix)

restaurant(pizzaHut)

likes(friend,saravanaBhavan)

outing(mall)

likes(friend, bhuvanShome)

The solution

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

A not so easy problem

Given the following knowledge base (in list notation)

{(O A B), (O B C), (not (M A)), (M C)}

What is the KB talking about? What is the semantics?

Depends upon the interpretation ϑ = <D, I> !

Two sample interpretations….

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Interpretation 1

Domain: Blocks World

Predicate symbols

I(O) = On

I(M) = Maroon

Constant Symbols

A, B, C blocks

A
B

{(O A B), (O B C), (not (M A)), (M C)}

C

is not maroon

is maroon

A is on B

B is on C
?

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Interpretation 2

Domain: People

Predicate symbols
I(O) = LookingAt
I(M) = Married

Constant Symbols
I(A) = Jack
I(B) = Anne
I(C) = John

{(O A B), (O B C), (not (M A)), (M C)}

John

is not married

Anne Jack

is married ?

Anne is looking at John

Jack is looking at Anne

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

The Goal

Given the KB and the goal

(exists (x y) (and (O x y) (not (M x)) (M y)))

or equivalently (and (O ?x ?y) (not (M ?x)) (M ?y))

…is clearly entailed

Interpretations are,

Blocks World: Is there a not-maroon block on a maroon block?

People: Is a not-married person looking at a married one?

{(O A B), (O B C), (not (M A)), (M C)}

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

Incompleteness of Backward and Forward Chaining
Given the KB,

{(O A B), (O B C), (not (M A)), (M C)}

And the Goal,

(and (O ?x ?y) (not (M ?x)) (M ?y))

Neither Forward Chaining nor Backward Chaining
is able to generate a proof.

Both are Incomplete!

Next, we look at a proof method,
the Resolution Refutation System,

that is Sound and Complete for FOL

Knowledge Representation and Reasoning: Introduction Deepak Khemani, IIT Madras

End of Module 2

