Knowledge Representation and Reasoning with First Order Logic Module 2
 Deepak Khemani

The Syllabus

Introduction: Overview and Historical Perspective
First Order Logic: A logic with quantified variables.
Module 1 (2 hours): Syntax, Semantics, Entailment and Models, Proof Systems, Knowledge Representation.

Module 2 (2 hours): Skolemization, Unification, Deductive Retrieval, Forward Chaining, Backward Chaining

Module 3 (2 hours): Resolution Refutation in FOL, Horn Clauses and Logic Programming
Module 4 (2 hours): Variations on FOL

Text book
Deepak Khemani. A First Course in Artificial Intelligence (Chapters 12 \& 13), McGraw Hill Education (India), 2013.

What does the agent know and
 what else does the agent know as a consequence of what it knows?

Module 2

Reasoning

The manipulation of symbols in a meaningful manner.

Maths is replete with algorithms we use -

- Addition and multiplication of multi-digit numbers
- Long division
- Solving systems of linear equations
- Fourier transforms, convolution...

The Syllogism

The Greek syllogism embodies the notion of formal logic.
An argument is valid if it conforms to a valid form

All cities are congested
Chennai is a city
Chennai is congested

All politicians are honest Sambit is a politician

Sambit is honest

In a valid argument
IF the premises are true
THEN the conclusions are necessarily true

Some common rules of inference

Recap

From	$\alpha \supset \beta$
and	$\underline{\alpha}$
Infer	β
Modus	Ponens (MP)

From	$\alpha \supset \beta$			
and	$\sim \beta$			
Infer	$\sim \alpha$			
Modus Tollens (MT)		\quad	From	α
:---	:---			
and	β			
Infer	$\alpha \wedge \beta$			
Conjunction (C)				

From	$\underline{\alpha}$
Infer	$\alpha \vee \beta$
Addition (A)	

From $\quad \alpha \wedge \beta$	
Infer	α
Simplification (S)	

From	$(\alpha \supset \beta) \wedge(\gamma \supset \delta)$
and	$\alpha \vee \gamma$
Infer	$\beta \vee \delta$
Constructive Dilemma (CD)	

From	$(\alpha \supset \beta) \wedge(\gamma \supset \delta)$
and	$\sim \beta \vee \sim \delta$
Infer	$\sim \alpha \vee \sim \gamma$
Destructive Dilemma (DD)	

From	$\alpha \vee \beta$
and	$\sim \alpha$
Infer	β
Disjuncuntive	
Syllogism (DS)	

From	$\alpha \supset \beta$
and	$\beta \supset v$
Infer	$\alpha \supset y$
Hypothetical	
Syllogism	

Proof

Semantics (Propositional Logic)

Atomic sentences in Propositional Logic can stand for anything. Consider,
Alice likes mathematics and she likes stories. If she likes mathematics she likes algebra. If she likes algebra and likes physics she will go to college. She does not like stories or she likes physics. She does not like chemistry and history.

Encoding: P = Alice likes mathematics. $\mathrm{Q}=$ Alice likes stories. $\mathrm{R}=$ Alice likes algebra. S = Alice likes physics. $T=$ Alice will go to college. $\mathrm{U}=$ Alice likes chemistry. $\mathrm{V}=$ Alice likes history.
Then the given facts are,

$$
\begin{aligned}
& (P \wedge Q) \\
& (P \supset R) \\
& ((R \wedge S) \supset T) \\
& (\sim Q \vee S) \\
& (\sim \cup \wedge \sim V)
\end{aligned}
$$

If the above sentences are true is it necessarily true that "Alice will go to college"?
 That is " Is T true?"
 We answer this by producing a proof (of T)

Proofs in Propositional Logic

1. $(P \wedge Q)$ premise
2. $(P \supset R) \quad$ premise
3. $((R \wedge S) \supset T)$ premise
4. $(\neg \mathrm{Q} \vee \mathrm{S}) \quad$ premise
5. P 1, simplification
6. Q 1, simplification
7. R

2,5 , modus ponens
8. S 4, 6, disjunctive syllogism*
9. $(R \wedge S) \quad 7,8$, conjunction
10. T 3, 9, modus ponens
*Strictly speaking a substitution step $Q \equiv \neg \neg Q$ has to be applied before disjunctive syllogism is applicable.

The First Order version

Let us rephrase our example (Alice) problem in first order terminology.

- Alice likes mathematics and she likes stories.
- If someone likes mathematics she likes algebra ${ }^{[1]}$.
- If someone likes algebra and likes physics she will go to college.
- Alice does not like stories or she likes physics.
- Alice does not like chemistry and history."

We can formalize the statements in FOL as follows.

1. likes(Alice, Math) \wedge likes(Alice, stories)
2. $\forall x($ likes $(x$, Math $) \supset$ likes(x, Algebra))
3. $\forall x(($ likes $(x$, Algebra $) \wedge$ likes $(x$, Physics $)) \supset$ goesTo(x, College $))$
4. \neg likes(Alice, stories) \vee likes(Alice, Physics)
5. \neg likes(Alice, Chemistry) $\wedge \neg$ likes(Alice, History)

凹Here we must emphasize that she stands for both she and he.

FOL: Rules of Inference

The propositional logic rules we saw earlier are valid in FOL as well. In addition we need new rules to handle quantified statements. The two commonly used rules of inference are,

$\frac{\forall x P(x)}{P(a)}$	where $a \in C$	Universal Instantiation (UI)
$\frac{P(a)}{\exists x P(x)}$	where $a \in C$	Generalization

Examples:

$$
\frac{\forall x(\operatorname{Man}(x) \supset \operatorname{Mortal}(x))}{(\text { Man }(\text { Socrates }) \supset \operatorname{Mortal}(\text { Socrates }))}
$$

```
(Man(Socrates) \supset Mortal(Socrates))
    \existsx (Man(x) \supset Mortal(x))
```


The FOL Proof

1.likes(Alice, Math) \wedge likes(Alice, stories)
2. $\forall x$ (likes $(x$, Math $) \supset$ likes $(x$, Algebra) $)$
3. $\forall x(($ likes $(x$, Algebra $) \wedge$ likes $(x$, Physics $)) \supset$ goesTo(x, College) $)$
4. \neg likes(Alice, stories) \vee likes(Alice, Physics)
5. $ᄀ$ likes(Alice, Chemistry) ^ $ᄀ$ likes(Alice, History)

We can now generate a proof that is analogous to the proof in propositional logic.
6. likes(Alice, Math)

1, simplification
7. likes(Alice, stories)
8. (likes(Alice, Math) \supset likes(Alice, Algebra))

1, simplification
9. likes(Alice, Algebra))

2, UI
10. likes(Alice, Physics)

6,8 , modus ponens
11. ((likes(Alice, Algebra) ^ likes(Alice,Physics))

4, 7, disjunctive syllogism
12. ((likes(Alice, Algebra) \wedge likes(Alice,Physics)) \supset goesTo(Alice,College)) 3 , UI
13. goesTo(Alice, College) 12, 11, modus ponens

Forward Chaining in FOL

Forward chaining in FOL is a two step process. First a relevant instantiation of a rule is created. Then the rule instance is used by modus ponens to produce the consequent.

The use of Implicit Quantifier Notation collapses this two step inference into one.

List notation

Standard mathematical notation

1. $\forall x(\operatorname{Man}(x) \supset H u m a n(x))$
2. Happy(suresh) \vee Rich(suresh)
3. $\forall x(C i t r u s F r u i t(x) \supset \neg H u m a n(x))$
4. $\exists x(\operatorname{Man}(x) \wedge \operatorname{Bright}(x)) \quad$: some men are bright

List notation (a la Charniak \& McDermott, "Artificial Intelligence")
1.(forall (x) (if (man x) (human $x)$))
2.(or (happy suresh) (rich suresh))
3.(forall (x) (if (citrusFruit x) (not (human $x)$)))
4. (exists (x) (and (man $x)($ bright $x))$)

Implicit Quantifier notation

Prefix universally quantified variables with a "?". Replace existentially quantified variables not in the scope of a universal quantified with a Skolem constant (named after the mathematician Thoralf Skolem)
1.Man(?x) $\supset \operatorname{Human}(? x)$
2.Happy(suresh) \vee Rich(suresh)
3.CitrusFruit(?x) $\supset \neg H u m a n(? x)$
4.Man(sk-11) \wedge Bright(sk-11))
: all men are human beings
: Suresh is rich or happy
: all citrus fruits are non-human
: some men are bright

List notation

1. (if (man ?x) (human ?x))
2. (or (happy suresh) (rich suresh))
3. (if (citrusFruit ?x) (not (human ?x)))
4. (and (man sk-11) (bright sk-11))

Unifier: Substitution

A substitution θ is a set of <variable value> pairs denoting the values to be substituted for the variables.

A unifier for two formulas α and β is a substitution that makes the two formulas identical. We say that α unifies with β. A unifier θ unifies a set of formulas $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right\}$ if,

$$
\alpha_{1} \theta=\alpha_{2} \theta=\ldots=\alpha_{N} \theta=\varphi
$$

We call the common reduced form φ as the factor.

Modified Modus Ponens (MMP)

MPP: From ($\alpha \supset \gamma$) and β infer $\gamma \theta$ where θ is a unifier* for α and β and $\gamma \theta$ is the formula obtained by applying the substitution* θ to γ.

For example,
MMP

A substitution θ is a set of <variable value> pairs denoting the values to be substituted for the variables.

A substitution θ is a unifier for two (or more) formulas α and β if when applied it makes the two formulas identical. That is, $\alpha \theta=\beta \theta$

MPP: an example

Thus if

$$
\begin{array}{ll}
\alpha & =(\text { Sport(tennis) } \wedge \text { Likes(Alice, tennis) }) \\
\beta \supset \delta & =(\text { Sport(?y) } \wedge \text { Likes(?x, ?y) }) \supset \text { Watches(?x, ?y) }
\end{array}
$$

then α unifies with β with the substitution $\theta=\{<? x$, Alice>, <? y, tennis> $\}$ given above, and one can infer

$$
\delta \theta \quad=\text { Watches }(? x, ? y) \theta=\text { Watches(Alice, tennis) }
$$

A shorter proof with Modified Modus Ponens

1. likes(Alice, Math) \wedge likes(Alice, stories)
2. likes(?x, Math) \supset likes(?x, Algebra)
3. (likes(?x, Algebra) \wedge likes(?x, Physics)) \supset goesTo(?x, College)
4. \neg likes(Alice, stories) \vee likes(Alice, Physics)
5. \neg likes(Alice, Chemistry) $\wedge \neg$ likes(Alice, History)
6. likes(Alice, Math)
7. likes(Alice, stories)
8. likes(Alice, Algebra)
9. likes(Alice, Physics)
10. ((likes(Alice, Algebra) \wedge likes(Alice,Physics))
11. goesTo(Alice, College)

1, simplification
1, simplification
6, 2, MPP
4, 7, disjunctive syllogism
9,10 , conjunction
3, 10, MPP

More general and more specific sentences

We say that a sentence α is more general than sentence β if there exists a non-empty substitution λ such that $\alpha \lambda=\beta$.

Everyone loves a good teacher (good-teacher ?x) \supset (loves ?y ?x)
is more general than
Suresh loves a good a teacher
(good-teacher ?x) $\supset($ loves suresh ?x)
and
Everyone's dad loves a good teacher (good-teacher ?x) $\supset($ loves (dad ?y) ?x)

A more general sentence entails a less general one (generalized UI)

General Inferences and Specific Inferences

The Unification Algorithm

- The unification algorithm takes two or more formulas are finds the most general unifier for the formulas
- In the list notation for formulas there are three kinds of elements
- lists
- constants
- variables
- Two constants can only unify (match) if identical
- Two lists are unified element by element building up the substitution as we scan the lists.
- A variable can match another variable, or a constant, or a list not containing the variable

Standardizing variables apart

Consider the two formulas

Clearly one cannot substitute ?x with both 0 and 7
Solution: Rename variables differently in each formula.

Standardizing variables apart

Solution: Rename variables differently in each formula.

$$
\theta=\{<? z, 7>,<? x, 0>\}
$$

... and one can now derive the conclusion (SmallerOrEqual 0 7)

The Unification Algorithm

Algorithm Unify returns the MGU for arg1 and arg2

```
Unify(arg1, arg2)
    Return SubUnify(arg1, arg2, ( ))
```

Call an auxiliary function SubUnify adding a third argument.

- to build the substitution θ piece by piece
- initially θ is the empty list

Algorithm SubUnify (arg1, arg2, θ)

1. If arg1 and arg2 are both constants then they must be equal (else return NIX)
2. If arg1 is a variable, call VarUnify(arg1, arg2, θ)
3. If $\arg 2$ is a variable, call VarUnify(arg2, arg1, θ)
/* at this point both must be lists */
4. If Length(arg1) \neq Length(arg2) return NIX
5. For each corresponding element in arg1 and arg2 Call SubUnify recursively building up the substitution θ

Algorithm VarUnify(var, arg, θ)

1. If var exists* in arg return NIX
2. If var has a value <var, pat> in θ
return SubUnify(pat, arg)
3. If $\operatorname{var}=\arg$ return θ
4. Augment $\theta \leftarrow\{<$ var, $\arg >\} \cup \theta$ and return θ
*Should not be able to unify ?x with (plus ?x 1) for example

Skolemization: existentially quantified variables

When the existential quantifier is not in the scope of any universal quantifier, then the variable it quantifies is replaced by a Skolem constant.
For example the statements,
(exists (z) (and (Student z) (Bright z))
$\exists z(S t u d e n t(z) \wedge \operatorname{Bright}(z))$
(exists (y) (and (Girl y) (forall (x) (if (Boy x) (Likes xy) $\exists y(\operatorname{Girl}(\mathrm{y}) \wedge \forall x(\operatorname{Boy}(x) \supset \operatorname{Likes}(\mathrm{x}, \mathrm{y}))$
are skolemized as,
(and (Student sk1) (Bright sk1))
(Student(sk1) ^ Bright(sk1))
(and (Girl sk2) (if (Boy ?x) (Likes ?x sk2))
((Girl sk2) ^ ((Boy ?x) $\supset($ Likes ? $\mathrm{x}, \mathrm{sk} 2)))$

Skolemization: existential variables within universal quantifiers

When the existential quantifier is in the scope of one or more universal quantifiers then the existentially quantified variable is a Skolem function of the corresponding universally quantified variables.
For example the statements,

$$
\begin{aligned}
& \text { (forall (x y) (exists (z) (and ((LessThan x z) (LessThan y z)))) } \\
& \forall x \forall y \exists z \text { (LessThan(} x, z) \wedge \text { LessThan(} y, z)) \\
& \text { (forall (x) (if (Boy x) (exists (y) (and (Girl y) (Likes x y)) } \\
& \forall x(\operatorname{Boy}(x) \supset \exists y(\operatorname{Girl}(y) \wedge \operatorname{Likes}(x, y))
\end{aligned}
$$

are skolemized as,

$$
\begin{gathered}
\text { (and (LessThan ?x (sk57 ?x ?y)) (LessThan ?y (sk57 ?x ?y))) } \\
\text { LessThan(?x sk57(?x ?y)) ^ LessThan(?y sk57(?x ?y)) } \\
\text { (if (Boy ?x) (and (Girl (sk16 ?x)) (Likes ?x (sk16 ?x)))) } \\
(\text { Boy ?x) } \supset(\text { Girl(sk16 ?x) } \wedge \text { Likes }(? x(\text { sk16 ?x) })
\end{gathered}
$$

FOL: Rules of Substitution

The following rules of substitution are also useful,
Moving a negation operator inside changes the quantifier

$$
\begin{array}{lll}
\neg \forall x \alpha & \equiv \exists x \neg \alpha & \text { DeMorgan's law } \\
\neg \exists \mathrm{x} \alpha & \equiv \forall \mathrm{x} \neg \mathrm{\alpha} & \text { DeMorgan's law }
\end{array}
$$

Two quantifiers of the same type are commutative

$$
\begin{array}{ll}
\forall x \forall y \alpha & \equiv \forall y \forall x \alpha \\
\exists x \exists y \alpha & \equiv \exists y \exists x \alpha
\end{array}
$$

The real nature of a variable

Whether a variable is universally quantified or existentially quantified has to be decided carefully. One must keep in mind that a negation sign influences the nature of the quantifier.

Consider the formalization of "An immortal man does not exist" which is another way of saying that all men are mortal.

$$
\neg \exists x(\operatorname{Man}(x) \wedge \neg \operatorname{Mortal}(x))
$$

What is the nature of the variable x ?

On the surface it is bound by an existential quantifier so one might mistakenly skolemize it as $\neg($ (Man sk11) $\wedge \neg$ (Mortal sk11)) but that only talks of a specific, albeit unspecified, individual or individuals. The correct way to skolemize a formula is to first push the negation sign inside. That gives us the form,

$$
\forall x \neg(\operatorname{Man}(x) \wedge \neg \operatorname{Mortal}(x))
$$

The real nature of a variable

The following sentence reads "If there exists a number that is even and odd then the Earth is flat" and is formalized as,
$(\exists x(\operatorname{Number}(x) \wedge \operatorname{Even}(x) \wedge \operatorname{Odd}(x))) \supset$ Flat(Earth)
However if we rewrite the equivalent formulas as,
$\neg(\exists x(\operatorname{Number}(x) \wedge$ Even $(x) \wedge \operatorname{Odd}(x))) \vee$ Flat(Earth)
$\equiv \quad \forall x(\neg(\operatorname{Number}(x) \wedge \operatorname{Even}(x) \wedge \operatorname{Odd}(x))) \vee$ Flat(Earth)
$\equiv \quad \forall x(\neg(\operatorname{Number}(x) \wedge \operatorname{Even}(x) \wedge \operatorname{Odd}(x)) \vee$ Flat(Earth $))$
$\equiv \quad \forall x((\operatorname{Number}(\mathrm{x}) \wedge$ Even $(\mathrm{x}) \wedge \operatorname{Odd}(\mathrm{x})) \supset$ Flat(Earth $))$

We can see that x is really universally quantified variable.

The real nature of a variable

The following example that asserts "A detective who has a sidekick is successful" also illustrates the point that a quantifier in the antecedent part of an implication statement is masquerading as the other quantifier.
$\forall x($ Detective $(x) \wedge \exists y \operatorname{Sidekick}(y, x)) \supset$ Successful(x))

$$
\begin{array}{ll}
\equiv & \forall x(\neg \operatorname{Detective}(\mathrm{x}) \vee \neg \exists \mathrm{y} \text { Sidekick }(\mathrm{y}, \mathrm{x}) \vee \text { Successful }(\mathrm{x})) \\
\equiv & \forall \mathrm{x}(\neg \operatorname{Detective}(\mathrm{x}) \vee \forall \mathrm{Sidekick}(\mathrm{y}, \mathrm{x}) \vee \operatorname{Successful}(\mathrm{x})) \\
\equiv & \forall \mathrm{x} \forall \mathrm{y}(\neg \operatorname{Detective}(\mathrm{x}) \vee \neg \operatorname{Sidekick}(\mathrm{y}, \mathrm{x}) \vee \operatorname{Successful}(\mathrm{x})) \\
\equiv & \forall \mathrm{x} \forall \mathrm{y}(\neg(\operatorname{Detective}(\mathrm{x}) \wedge \operatorname{Sidekick}(\mathrm{y}, \mathrm{x})) \vee \operatorname{Successful}(\mathrm{x})) \\
\equiv & \forall \mathrm{x} \forall \mathrm{y}(\neg(\operatorname{Detective}(\mathrm{x}) \wedge \operatorname{Sidekick}(\mathrm{y}, \mathrm{x})) \supset \operatorname{Successful}(\mathrm{x}))
\end{array}
$$

Inference with a Skolem constant

In the unification algorithm the Skolem constants are simply treated as constants.

From	$\exists x \operatorname{Even}(x)$
And	$\forall x(\operatorname{Even}(x) \supset \neg \operatorname{Odd}(x))$
Infer	$\exists x \neg \operatorname{Odd}(x)$

When we skolemize the premises we get,
Even (SomeEvenNumber)
Even (?x) $\supset \neg O d d(? x)$
With the substitution $\{? \mathrm{x}=$ SomeEvenNumber $\}$ we can infer
\neg Odd(SomeEvenNumber).
A constant can also be thought of as a function of arity 0 .

Inference with a Skolem constant

In the unification algorithm the Skolem functions are simply treated as functions.

From	$\forall x \exists y \operatorname{Loves}(x, y)$
And	$\forall x \forall y$ (Loves $(x, y) \supset \operatorname{CaresFor}(\mathrm{x}, \mathrm{y}))$
If someone loves somebody then they care for them	

When we skolemise the premises we get,
Loves (?x (sk7 ?x))
Loves (?z ?y) つ CaresFor (?z ?y)
Applying the substitution $\{? \mathrm{z}=? \mathrm{x}, \mathrm{?} \mathrm{y}=(\mathrm{sk} 7$? x$)$ \} we get the conclusion,
CaresFor (?x (sk7 ?x))

Rule Based Expert Systems

In the 1980's the idea that you can capture the knowledge of a human expert in the form of rules led to the development of Expert Systems. Rule Based Systems or Production Systems have been used in general to decompose a problem and address it in parts. In its most abstract form a rule or a production is a statement of the form,

$$
\text { Left Hand Side } \rightarrow \text { Right Hand Side }
$$

in which the computation flows from the left hand side to the right hand side, that is Forward Chaining

Forward Chaining Rule Based Systems

Productions or rules can be used both in a forward direction and backward direction. In the forward direction it is in a data driven manner. The production then looks like,

$$
\text { Pattern } \rightarrow \text { Action }
$$

where the pattern is in the given database. Thus a rule based system looks at a part of a state, and triggers some action when a pattern is matched. Usually the actions are to make some changes in the database describing the state.

An example of a rule

One could write a rule to sort an array of numbers as follows
(p interchange
(array ^index i ^ value N)
(array ${ }^{\wedge}$ index $\{j>i\}{ }^{\wedge}$ value $\{\mathrm{M}<\mathrm{N}\}$
\rightarrow
(modify 1^{\wedge} value M)
(modify $2{ }^{\wedge}$ value N$)$)
We have used above the notation of the language OPS5 (Forgy, 1981), one of the first rule based languages developed at Carnegie Mellon University.
(rule interchange
IF there is an element at index i with value N, AND IF there is an element at index $\mathrm{j}>\mathrm{i}$ with value $\mathrm{M}<\mathrm{N}$
THEN
modify array(i) to hold M,
AND modify array(j) to hold N)

XCON

Originally called R1[1] the XCON system was a forward chaining rule based system to help automatically configure computer systems (McDermott, 1980a; 1980b). XCON (for eXpert CONfigurer) was built for the computer company Digital Equipment Corporation, and helped choose components for their VAX machines. XCON was implemented in the rule based language OPS5. By 1986 XCON had been used successfully at DEC processing over 80,000 orders with an accuracy over 95%.

XCON is a forward chaining rule based system that worked from requirements towards configurations, without backtracking. It needed two kinds of knowledge (Jackson, 1986),

- knowledge about components, for example voltage, amperage, pinning-type and number of ports, and
- knowledge about constraints, that is, rules for forming partial configurations of equipment and then extending them successfully.

XCON: Component Knowledge

XCON stored the component knowledge in a separate database, and used its production system architecture to reason about the configuration. The following is an example of a record that describes a disk controller.

RK611*

> CLASS:
> TYPE:
> SUPPORTER:
> PRIORITY LEVEL:
> TRASFER RATE:

UNIBUS MODULE DISK DRIVE YES BUFFERED NPR $12 \ldots$

XCON: Rules

Constraints knowledge is specified in the form of rules. The LHS describes patterns in partial configurations that can be extended, and the RHS did those extensions. The following is an English translation of an XCON rule taken from (Jackson, 1986).

DISTRIBUTE-MB-DEVICES-3

IF the most current active context is distributing massbus devices
\& there is a single port disk drive that has not been assigned to a massbus
\& there is no unassigned dual port disk drives
\& the number of devices that each massbus should support is known
\& there is a massbus that has been assigned at least one disk drive and that should support additional disk drives
\& the type of cable needed to connect the disk drive to the previous device on
the disk drive is known

THEN

assign the disk drive to the massbus

Backward Chaining

In Backward Chaining we move from the goal to be proved towards facts. From ($\alpha \supset \gamma$) and Goal: β infer Goal: $\alpha \theta$ where θ is a unifier* for γ and β and $\alpha \theta$ is the formula obtained by applying the substitution* θ to α.
For example,

A goal is said to be solved if it matches a fact in the KB. In the above example we start with the goal of proving $Q(a)$ and reduce to the sub-goal $P(a)$, which is satisfied in the KB.

Backward Reasoning

- Backward reasoning is goal directed
- We only look for rules for which the consequent matches the goal.
- This results in low branching factor in the search tree
- which rule to apply from the matching set of rules?
- Foundations of Logic Programming
- the programming language Prolog

Deductive Retrieval

The goal need not be a specific proposition
It can be have variables as well
Formulas with variables can match facts.
For example the goal Goal: Mortal(?z)
can be interpreted as an existential statement
Is the statement $\exists z \operatorname{Mortal}(z)$ true?
The answer, in addition to yes or no, can also return a value for the variable for which it is true.

Deductive Retrieval: 3 possible answers

Backward Chaining (Propositional Logic)

Alice likes mathematics (P) and she likes stories (Q). If she likes mathematics (P) she likes algebra (R). If she likes algebra (R) and likes physics (S) she will go to college (T). She does not like stories (Q) or she likes physics (S). She does not like chemistry (U) and history (V).
Then the given facts are, $(P \wedge Q),(P \supset R),((R \wedge S) \supset T),(\sim Q \vee S),(\sim U \wedge \sim V)$
Then the given facts are, $(P \wedge Q),(P \supset R),((R \wedge S) \supset T),(\sim Q \vee S),(\sim U \wedge \sim V)$

Equivalently
2.Q
3. $(\mathrm{P} \supset \mathrm{R})$
4.($\mathrm{R} \wedge$ S) \supset T)
5.(Q د S)
6.~U
7.~V

Goal Set

\{T\} Given goal $\{\mathrm{R}, \mathrm{S}\}$ from 4
$\{P, S\}$ from 3
\{S\} 1
\{Q\} from 5
\{\} 2, success
"Is T true?"
We answer this by backward chaining.

Backward Chaining with Conjunctive Antecedents

A goal (R ? x) with a rule (if (and (P ? x) (Q ? x$)$) (R ? x))

A goal which matches the consequent of a rule reduces to the antecedents in the rule.

Goal Trees

Consider the following KB in skolemized list notation, and the goal (niceToy ?z)
Rule1: (if (and (green ?x) (circle ?x)) (niceToy ?x))
Rule2: (if (and (red ?x) (square ?x)) (niceToy ?x)) (green A)
(green B)
(circle C)
(red C)
(red D)
(square D)
(circle E)

Goal tree = AND/OR tree

Depth First Search

Goal Set

$\{($ niceToy ?x) $\}$
$\{($ green $? x)$, (circle ?x) $\} \quad$ Rule1 $\{($ circle A) $\quad ? x=A \quad$ FAIL $\{($ circle B) $) \quad ? \mathrm{x}=\mathrm{B} \quad$ FAIL $\{($ red ?x), (square ?x)\} Rule2 $\{($ square C) $\} \quad$? $x=C \quad$ FAIL $\{($ square D$)\} \quad ? \mathrm{x}=\mathrm{D}$
\{\} Success

AND/OR tree: Solution = subtree

A Prolog KB (program)

outingPlan (X, Y, Z) :- eveningPlan (X), moviePlan (Y), dinnerPlan (Z).
eveningPlan (X) :- outing (X), likes(friend, X).
moviePlan (X) :- movie (X), likes(friend, X).
dinnerPlan (X) :- restaurant (X), likes(friend, X).
outing(mall).
outing(beach).
movie(theMatrix).
movie(artificiallntelligence).
movie(bhuvanShome).

(if (and (restaurant ?x) (likes friend ?x)) (dinnerPlan ?x))
movie(sevenSamurai).
restaurant(pizzaHut).
restaurant(saravanaBhavan).
likes(friend, beach).
likes(friend, theMatrix).
likes(friend, bhuvanShome).
likes(friend, sarvanaBhavan).

Backward Chaining: Depth First Search

```
{outingPlan(X,Y,Z)}
{eveningPlan(X), moviePlan(Y), dinnerPlan(Z)}
{outing(X), likes(friend, X), moviePlan(Y), dinnerPlan(Z)}
{likes(friend, mall), moviePlan(Y), dinnerPlan(Z)}
{"fail", moviePlan(Y), dinnerPlan(Z)}
{outing(X), likes(friend, X), moviePlan(Y), dinnerPlan(Z)}
{likes(friend, beach), moviePlan(Y), dinnerPlan(Z)}
{moviePlan(Y), dinnerPlan(Z)}
{movie(Y), likes(friend,Y), dinnerPlan(Z)}
{likes(friend, theMatrix), dinnerPlan(Z)}
{dinnerPlan(Z)}
{restaurant(Z), likes(friend,Z)}
{likes(friend,pizzaHut)}
{"fail"}
{restaurant(Z), likes(friend,Z)}
{likes(friend, saravanaBhavan)}
{}
```

```
theta = { }
```

theta = { }
theta = {X=mall}
theta = {X=mall}
theta = {X=mall}
theta = {X=mall}
theta ={ }backtrack
theta ={ }backtrack
theta = {X=beach}
theta = {X=beach}
theta = {X=beach }
theta = {X=beach }
theta = {X=beach }
theta = {X=beach }
theta = {X=beach, Y=theMatrix }
theta = {X=beach, Y=theMatrix }
theta ={X=beach, Y=theMatrix }
theta ={X=beach, Y=theMatrix }
theta = {X=beach, Y=theMatrix }
theta = {X=beach, Y=theMatrix }
theta = {X=beach, Y=theMatrix, Z=pizzaHut}
theta = {X=beach, Y=theMatrix, Z=pizzaHut}
theta = {X=beach, Y=theMatrix, Z=pizzaHut }
theta = {X=beach, Y=theMatrix, Z=pizzaHut }
theta = {X=beach, Y=theMatrix }}\mathrm{ backtrack
theta = {X=beach, Y=theMatrix }}\mathrm{ backtrack
theta = {X=beach, Y=theMatrix, Z= saravanaBhavan }
theta = {X=beach, Y=theMatrix, Z= saravanaBhavan }
theta = {X=beach, Y=theMatrix, Z= saravanaBhavan }

```
theta = {X=beach, Y=theMatrix, Z= saravanaBhavan }
```


A not so easy problem

Given the following knowledge base (in list notation)

$$
\{(\mathrm{OAB}),(\mathrm{OBC}),(\operatorname{not}(\mathrm{M} A)),(\mathrm{MC})\}
$$

What is the KB talking about? What is the semantics?

Depends upon the interpretation $\vartheta=<\mathrm{D}, \mathrm{l}>$!

Two sample interpretations....

Interpretation 1

$\{(\mathrm{OAB}),(\mathrm{OBC}),(\operatorname{not}(\mathrm{MA})),(\mathrm{M} \mathrm{C})\}$
Domain: Blocks World

Predicate symbols
$\mathrm{I}(\mathrm{O})=\mathrm{On}$
$\mathrm{I}(\mathrm{M})=$ Maroon

Constant Symbols
A, B, C \rightarrow blocks

Interpretation 2

 $\{(\mathrm{OAB}),(\mathrm{OBC}),(\operatorname{not}(\mathrm{MA})),(\mathrm{M} \mathrm{C})\}$Predicate symbols $\mathrm{I}(\mathrm{O})=$ LookingAt
$\mathrm{I}(\mathrm{M})=$ Married
Constant Symbols I(A) = Jack
I(B) = Anne
I(C) = John

Anne is looking at John
Jack is looking at Anne

The Goal

$\{(O A B),(O B C),(\operatorname{not}(M A)),(M C)\}$

Given the KB and the goal (exists (xy) (and (Oxy) (not (Mx)) (My))) or equivalently (and (O ?x ?y) (not (M ?x)) (M ?y))
...is clearly entailed

Interpretations are,
Blocks World: Is there a not-maroon block on a maroon block?
People: Is a not-married person looking at a married one?

Incompleteness of Backward and Forward Chaining

Given the KB, $\{(O A B),(O B C),(\operatorname{not}(M A)),(M C)\}$
And the Goal, (and (O ?x ?y) (not (M ?x)) (M ?y))

Neither Forward Chaining nor Backward Chaining is able to generate a proof.
Both are Incomplete!
Next, we look at a proof method, the Resolution Refutation System, that is Sound and Complete for FOL

End of Module 2

