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Knowledge representation

I Older work: semantic networks (Quillian 1967), frames
(Minsky 1981)

I (Minsky 1981) rejects the use of logic for representation
I (Brachmann 1978) suggests structured semantic networks
I (Hayes 1979) advocates thinking of inference mechanisms

on frames as logics

Question: Should AI use logic for knowledge representation?
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Logics

First-order logic Description logics Multi-modal logics
Unary predicates Concepts Propositions
Binary predicates Roles Modal operators

Description and modal logics have variable-free notation
compared to first-order logic

FOL:


Man(x)∧
∃y(married(x , y) ∧ Doctor(y))∧
∀y(child(x , y) ⊃ Happy(y))

DL: Man u ∃married .Doctor u ∀child .Happy
ML: Man ∧ 〈married〉Doctor ∧ [child ]Happy

DL and ML notations are very close, noticed by (Schild 1991),
borrowed ideas from ML into DL; DL ideas have also been
borrowed into ML
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Description logics AL to ALC

C ∈ AL ::= > | ⊥ | P | ¬ P | C u D | ∀r .C | ∃r .>
C ∈ ALE ::= > | ⊥ | P | ¬ P | C u D | ∀r .C | ∃r .C
C ∈ ALU ::= > | ⊥ | P | ¬ P | C t D | C u D | ∀r .C | ∃r .>
C ∈ ALC ::= > | ⊥ | P | ¬ C | C t D | C u D | ∀r .C | ∃r .C
I AL is the core description logic, conjunctions C u D and

value restrictions ∀r .C were thought to be basic for
describing concepts

I ALE has existential restrictions ∃r .C, these are used for
example in large medical ontologies

I ALU and ALC include full propositional logic, introduced by
(Schmidt-Schauß and Smolka 1991)



Domain and interpretation

C ∈ ALC ::= > | ⊥ | P | ¬ C | C t D | C u D | ∀r .C | ∃r .C

Domain D and interpretation map I
I (P)I ⊆ D, (>)I = D, (⊥)I = ∅
I (¬C)I = D \ (C)I

I (C u D)I = (C)I ∩ (D)I

I (C t D)I = (C)I ∪ (D)I

I (r)I ⊆ D ×D
I Value restriction

(∀r .C)I = {d ∈ D | for all e : (d ,e) ∈ (r)I implies e ∈ (C)I}
I Existential restriction

(∃r .C)I = {d ∈ D | for some e : (d ,e) ∈ (r)I and e ∈ (C)I}
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Description logics ALCreg and ALCrvm

I Regular expressions: R ::= r | R1 t R2 | R1;R2 | R∗1
I Man u ∃child .Human u ∀(child ; child∗)Happy
I t of roles is different from disjunction of concepts
I Universal role: (r1 t . . . t rk )

∗, where all the role names
from the concept descriptions are used

I Role value maps, e.g. child ◦ friend ⊆ known
(R ⊆ S)I =
{d ∈ D | ∀e : (d ,e) ∈ (R)I implies (d ,e) ∈ (S)I}

I Allowing in full generality is very powerful
I Restrict paths in role value maps to length one
I Only allow maps r ◦ r ⊆ r
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Description logics S to SROIQ

S: Roles may be transitive, e.g. part-of
SR: Role value maps

SRO: Nominals (singleton concepts), e.g.
President-of -India

SROI: Inverse roles, e.g. has-part ≡ part-of−

SROIN: Number restrictions, e.g. Fatheru ≤ 2child .>
(≤ nr .>)I = {d ∈ D | #{(d ,e) ∈ (r)I} ≤ n}

SROIQ: Qualifying number restrictions, e.g.
Fatheru ≤ 1child .Female
(≤ nr .C)I = {d ∈ D | #{(d ,e) ∈ (r)I | e ∈ (C)I} ≤ n}

Can also define other logics like ALUN, ALCN, . . .
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Terminological boxes

I TBox definitions: P ≡ C
Father ≡ Man u ∃child .Person
Mother ≡Woman u ∃child .Person
Man ≡ Person u ¬Woman
Woman ≡ Person u Female
Parent ≡ Mother t Father

I Expanding a TBox to get a full interpretation:
Father ≡ Person u ¬(Person u Female) u ∃child .Person

I Problem of eliminating acyclic TBoxes:
C1 ≡ ∀r .C0 u ∀r .C0,C2 ≡ ∀r .C1 u ∀r .C1, . . .
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Hierarchy and description logic SHROIQ

I SHROIQ (similar to OWL): r v s, e.g. Man v Human, only
interpretations where (r)I ⊆ (s)I

I General concept inclusions: C1 v C2
Person u ∃uncle.Father v ∃cousin.Person

I Assuming a universal role u: (T )I = ∀u.
l

DvE∈T

¬D t E

I Problem of eliminating GCIs
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TBoxes which are not acyclic

Human ≡ Adam t Eve t ∃parent .Human
(assume Adam and Eve are nominals)
or Human ≡ ∀parent .Human

I Let T a TBox with a primitive (not expanded) interpretation
J

I Let ExtJ be all extensions of J
I Let TJ : ExtJ → ExtJ map I to TJ (I) by
I (D)TJ (I) = (T (D))I for each defined concept D
I I is a model of T iff I is a fixed point (that is, TJ (I) = I),

where J is I restricted to a primitive interpretation



Fixed points

I Least fixed point (lfp): smallest of all the fixed points under
inclusion ⊆
Human ≡ Adam t Eve t ∃parent .Human

I Greatest fixed point (gfp): largest of all the fixed points
under inclusion ⊆
Super -rich ≡ Rich u Famous u ∀works-with.Super -rich



ABoxes

I Concept assertion: Logician(john)
(C(a))I if (a)I ∈ D

I Names interpreted as singletons, (a)I ∈ D
I Unique names assumption: a 6= b implies (a)I 6= (b)I

I Role assertion: (Man u ∃child .Woman)(john)
(r(a,b))I if ((a)I , (b)I) ∈ (r)I

I Interpretation I is a model of ABox A if it satisfies all
assertions in A

I If nominals are available, assume for every name a there is
a nominal a, and that u is fresh:
A =

l

C(a)∈A

∃u.(a u D) u
l

r(a,b)∈A

∃u.(a u ∃r .b)
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More description logic

I Concrete domains: integers, rationals
Teenager ≡ Humanu ≥10 (age)u ≤19 (age)

I Aggregation: sum,min,max



Reasoning with concept descriptions
(with TBoxes, but without ABoxes)

I C is subsumed by D with respect to T if (C)I ⊆ (D)I for
every model I of T

I C is satisfiable with respect to T if C and T have a
common model

I If bottom concept is available: C is satisfiable wrt T iff C is
not subsumed by ⊥ wrt T

I If negation is available: C is subsumed by D wrt T iff
C u ¬D is unsatisfiable wrt T

Subsumption algorithms:
ALN: polynomial time
ALE: NP (nondeterministic polynomial time)

ALU,ALUN: co-NP
ALEN,ALC,ALCN: polynomial space
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Reasoning with TBoxes and ABoxes

I Name a in A is an instance of C with respect to T if for all
models I of A and T , (a)I ∈ (C)I

I A is consistent with respect to T if A and T have a
common model

I If negation is available: a in A is an instance of C wrt T iff
A ∪ {¬C(a)} is inconsistent wrt T

I If bottom is available: A is consistent wrt T iff there is some
a in A which is an instance of ⊥ wrt T
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Compound inference problems

I Least common subsumer (lcs) of two concepts
I Most specific concept (msc) of every individual
I Hierarchy: Compute the concept hierarchy

Algorithm: Incremental, start with ⊥ v >, then do top and
bottom searches for direct subsumers

I Classification: Given T , compute subsumption relation v
of concept names used in T
Helps in organization of KB
Algorithm: multiple invocation of subsumption wrt T ,
naively O(n2) for n concept names in T , instead compute
concept hierarchy and proceed along it



Compound inference problems

I Realization: Given A,T ,a, compute set of concept names
C used in T satisfying C(a) which are minimal with respect
to subsumption in T
Helps in browsing and understanding of KB
Algorithm: multiple invocation of instance checking and
subsumption

I Retrieval: Given A,T ,C, compute set of individual names
a used in A such that C(a) in T
Used in querying KBs, some of which have huge number
of names
Algorithm: multiple invocation of instance checking



Nonstandard inference problems

I Rewriting to a shorter description, which may be a good
approximation:
Person u ∀child .Female u ∃child .> u ∀child .Person
→ Parent u ∀child .Woman

I Matching patterns:
Man u ∃child .(Man u X ) u ∃spouse.(Woman u X )
is matched by
Man u ∃child .(Man u Tall) u ∃spouse.(Woman u Tall)



Nonstandard inference problems

I Unification:
∀child .∀child .Rich u ∀child .Rmr and
Acr u ∀child .Acr u ∀child .∀spouse.Rich
are unified by
Rmr ≡ Rich u ∀spouse.Rich, Acr ≡ ∀child .Rich to the
equivalent descriptions:
∀child .∀child .Rich u ∀child .(Rich u ∀spouse.Rich)
and
∀child .Rich u ∀child .∀child .Rich u ∀child .∀spouse.Rich



Trade-offs in terminological reasoning

I Would like highly expressive description language
I Also would like efficient implementation of inference

algorithms which have acceptable run times on realistic
inputs coming from applications

I Algorithms should be sound (only make valid inferences),
complete (should make all valid inferences) and
terminating on all inputs

Theorem (Turing 1936)
There is no reasoning algorithm for FOL (subsumption) which is
sound, complete and terminating, even with one binary
predicate symbol.

Theorem (Bonatti 2003)
Neither for SHOIQ with terminological cycles.
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Practical TBox reasoning

Theorem (Cook-Karp-Levin 1970s)
There is a reasoning algorithm for propositional logic which is
sound, complete and terminating in polynomial time for all
inputs if and only if there are such algorithms for thousands of
other problems, such as colourability, bin packing, travelling
salesperson . . .

I It is conjectured that there are no such algorithms

I Reasoning algorithms for description logic inference
algorithms which are sound and complete typically take
exponential time in the worst case (between polynomial
space and nondeterministic exponential time)

I ML suggested use of (optimized) tableau algorithms
(Horrocks 1997)

I (Haarslev and Möller 2001) give examples of practical
success
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Structural subsumption algorithms

Let us first work with only conjunction C u D and value
restriction ∀r .C

I Every description is satisfiable, so we look at computing
subsumption C v D

I Convert formula to a structural subsumption normal form:
C ≡ P1 u . . . u Pm u ∀r1.C1 u . . . u ∀rn.Cn
where the Pi are distinct, the rj are distinct and the Cj are
recursively in normal form

I Proof: Use associativity, commutativity and idempotence of
u and convert ∀r .C1 u ∀r .C2 to ∀r .(C1 u C2)

I Let D ≡ Q1 u . . . uQk u ∀s1.D1 u . . . u ∀sl .Dl

I To check C v D: every Pi equals some Qj , and every ri
equals some sj , with Ci v Dj

I Distinctness of roles means at most one recursive call per
Ci , so polynomial time



Structural subsumption algorithms

Let us first work with only conjunction C u D and value
restriction ∀r .C

I Every description is satisfiable, so we look at computing
subsumption C v D

I Convert formula to a structural subsumption normal form:
C ≡ P1 u . . . u Pm u ∀r1.C1 u . . . u ∀rn.Cn
where the Pi are distinct, the rj are distinct and the Cj are
recursively in normal form

I Proof: Use associativity, commutativity and idempotence of
u and convert ∀r .C1 u ∀r .C2 to ∀r .(C1 u C2)

I Let D ≡ Q1 u . . . uQk u ∀s1.D1 u . . . u ∀sl .Dl

I To check C v D: every Pi equals some Qj , and every ri
equals some sj , with Ci v Dj

I Distinctness of roles means at most one recursive call per
Ci , so polynomial time



Structural subsumption algorithms

Let us first work with only conjunction C u D and value
restriction ∀r .C

I Every description is satisfiable, so we look at computing
subsumption C v D

I Convert formula to a structural subsumption normal form:
C ≡ P1 u . . . u Pm u ∀r1.C1 u . . . u ∀rn.Cn
where the Pi are distinct, the rj are distinct and the Cj are
recursively in normal form

I Proof: Use associativity, commutativity and idempotence of
u and convert ∀r .C1 u ∀r .C2 to ∀r .(C1 u C2)

I Let D ≡ Q1 u . . . uQk u ∀s1.D1 u . . . u ∀sl .Dl

I To check C v D: every Pi equals some Qj , and every ri
equals some sj , with Ci v Dj

I Distinctness of roles means at most one recursive call per
Ci , so polynomial time



Structural subsumption algorithms

Let us first work with only conjunction C u D and value
restriction ∀r .C

I Every description is satisfiable, so we look at computing
subsumption C v D

I Convert formula to a structural subsumption normal form:
C ≡ P1 u . . . u Pm u ∀r1.C1 u . . . u ∀rn.Cn
where the Pi are distinct, the rj are distinct and the Cj are
recursively in normal form

I Proof: Use associativity, commutativity and idempotence of
u and convert ∀r .C1 u ∀r .C2 to ∀r .(C1 u C2)

I Let D ≡ Q1 u . . . uQk u ∀s1.D1 u . . . u ∀sl .Dl

I To check C v D: every Pi equals some Qj , and every ri
equals some sj , with Ci v Dj

I Distinctness of roles means at most one recursive call per
Ci , so polynomial time



Allowing bottom

Now we allow ⊥, so satisfiability is not trivial

I In the definition of normal forms, we allow ⊥ as a normal
form

I If any of the Pi is ⊥, the whole conjunction is rewritten to ⊥
I Checking subsumption: observe that ⊥ is subsumed by

any description



Allowing negated atoms

Now we allow negated atomic concepts ¬P

I Treat them as concept names, except that when P and ¬P
occur as conjuncts they rewrite to ⊥

I ∀r .¬P u P u ∀r .(P u ∀r .Q)
→ P u ∀r .(¬P u P u ∀r .Q)
→ P u ∀r .(⊥ u ∀r .Q)
→ P u ∀r .⊥



Allowing number restrictions

Now let us allow number restrictions

I They may be true, e.g. ≥ 10r v ≥ 5r
I They may conflict, e.g. ≥ 2ru ≤ 1r
I They may conflict with value restrictions, e.g. ≥ nr u ∀r .⊥
I Again we rewrite conflicts to ⊥ and proceed to normalize



Allowing TBoxes

Now we allow TBoxes, first acyclic:

I Using associativity, commutativity and idempotence of u
and converting ∀r .(C1 u C2) to ∀r .C1 u ∀r .C2, we get
concept-centred normal form:
Conjunctions of ∀r1. . . .∀rn.P for n ≥ 0, with distinct ri

I More generally ∀L.P, where L is a finite set of words over
the roles in T (conventionally ∀∅.P = T )

I L is of polynomial size
I With C ≡ ∀L1.P1 u . . . ∀Lk .Pk and D ≡ ∀L′1.P1 u . . . ∀L′k .Pk ,

C v D iff Li ⊆ L′i , for i = 1, k
I Each inclusion can be checked in polynomial time and k is

polynomial in the input descriptions
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Allowing cyclic TBoxes

Now we allow cyclic TBoxes

I Represent the normal forms using finite automata over the
alphabet of role names (the transitions are labelled by
words) in T

I D ≡ ∀r .D u ∀s.C, B ≡ ∀r .∀s.C, C ≡ ∀s.C u P
I The language of paths from D to P in the automaton

represents all value restrictions to be satisfied by instances
of concept D

I Hence subsumption of cyclic TBoxes, with greatest fixed
point solutions, reduces to language inclusion of finite
automata, which can be done using a polynomial space
algorithm

I There is also a polynomial space algorithm for cyclic
TBoxes with least fixed point solutions



Allowing top and existential restriction

Instead of AL we can work with conjunction C u D, top concept
> and existential restrictions ∃r .C

I Normal form: C ≡ P1 u . . . u Pm u ∃r1.B1 u . . . u ∃rl .Bl ,
where Pi and rj are distinct and Bj are recursively in
normal form

I Description graph GT : Node C labelled with P1, . . . ,Pm,
rj -labelled edges to nodes Bj

I Checking C v D: find a simulation from GT to GT relating
(D,C)

I With greatest fixed point solutions of cyclic TBoxes,
simulations can be computed in polynomial time

I Also polynomial time for least fixed point soultions

Can allow bottom concept ⊥, nominals and GCI retaining
polynomial time



Conclusion

I Description logics provide a wide set of features which
allow repesentation of diverse situations found in
applications

I Algorithms have been developed for a rich set of reasoning
problems

I Other languages like OWL have been built on top of
description logics in the web setting

I Many description logics have low processing complexity
which allows successful development of software tools
using them

I There are restricted description logics which have efficient
reasoning algorithms

I Trade-offs between adequate expressiveness and fast
implementations


